1
|
Jesenko E, Vidrih R, Zlatić E. Comparative Analysis of Aroma Emissions in 'Gala' Apples Stored in Ethanol- and Hexanal-Enriched Controlled Atmosphere. Foods 2025; 14:930. [PMID: 40231932 PMCID: PMC11941499 DOI: 10.3390/foods14060930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/05/2025] [Accepted: 03/07/2025] [Indexed: 04/16/2025] Open
Abstract
The objectives of this study were to investigate the effects of extended and constant ethanol and hexanal exposure on 'Gala' apples' production of aroma compounds after long-term CA storage. 'Gala' apples were stored in a CA under 2 kPa O2 and 98 kPa N2 at 1.0 ± 0.1 °C with a constant ethanol (CA-et) or hexanal (CA-he) concentration maintained at 50 µgL-1 throughout a six-month storage period. A total of 25 volatile compounds (VOCs) were identified. The odor activity value (OAV) results show that nine VOCs were key aroma compounds. Among them, hexyl acetate, 2-methylbutyl acetate, and 1-butanol were the highest. Hexanal increased the production of hexyl acetate, while ethanol increased the production of 2-methylbutyl acetate and ethyl 2-methylbutanoate. Both precursors promoted the production of 1-butanol after two months of storage and 1 day of shelf life. Overall, the impact of the precursors on aroma production was more pronounced after two months than after six months of storage. Different storage atmospheres significantly influenced VOC correlations, suggesting that ethanol and hexanal addition altered aroma biosynthesis pathways in the 'Gala' apples. For varieties like 'Gala' that rapidly lose their aroma during CA storage, CA-et and CA-he treatments may be beneficial for short-term storage, enhancing key aroma compounds and improving sensory quality.
Collapse
Affiliation(s)
- Erika Jesenko
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia; (R.V.); (E.Z.)
| | | | | |
Collapse
|
2
|
Szymczak K, Nawrocka J, Bonikowski R. Fingerprinting of Volatile Organic Compounds in Old and Commercial Apple Cultivars by HS-SPME GC/GC-ToF-MS. Int J Mol Sci 2024; 25:13478. [PMID: 39769239 PMCID: PMC11676995 DOI: 10.3390/ijms252413478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/09/2024] [Accepted: 12/14/2024] [Indexed: 01/11/2025] Open
Abstract
Flavor is the most important feature consumers use to examine fruit ripeness, and it also has an important influence on taste sensation. Nowadays, more and more consumers pay much attention not only to the appearance but also to the fruit's aroma. Exploiting the potential of headspace solid-phase microextraction (HS-SPME) combined with sensitive two-dimensional gas chromatography and the time-of-flight mass spectrometry (GC/GC-ToF-MS) method within 30 old/traditional cultivars of apples (Malus domestica Borkh) coming from the same germplasm and 7 modern/commercial cultivars, 119 volatile organic compounds (VOCs) were identified. The largest group was esters (53), followed by alcohols (20), aldehydes (17), ketones (10), and acids (10). The richest volatile profile was 'Grochówka', with 61 VOCs present. The results revealed a visible difference based on VOC levels and profiles between the different apple cultivars, as well as visible similarities within the same cultivar coming from different farms. Based on a PCA, the commercial cultivars were separated into 7 clusters, including (1) 'Gala', (2) 'Melrose', (3) 'Red Prince', (4) 'Lobo', (5) 'Ligol', and (6) 'Szampion'. The results of this study indicate that the profile of volatile compounds may be a useful tool for distinguishing between commercial and old apple cultivars, as well as for the varietal classification of apples from different locations. The developed method can also be used to identify other fruit varieties and origins based on their VOC composition. This may prove to be particularly valuable in the case of establishing a Protected Designation of Origin or Protected Geographical Indication.
Collapse
Affiliation(s)
- Kamil Szymczak
- Institute of Natural Products and Cosmetics, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 2/22, 90-537 Lodz, Poland;
| | - Justyna Nawrocka
- Department of Plant Physiology and Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland;
| | - Radosław Bonikowski
- Institute of Natural Products and Cosmetics, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 2/22, 90-537 Lodz, Poland;
| |
Collapse
|
3
|
Ma N, Zhu J, Wang H, Qian MC, Xiao Z. Comparative Investigation of Aroma-Active Volatiles in ("Ruixue", "Liangzhi", "Crystal Fuji," and "Guifei") Apples by Application of Gas Chromatography-Mass Spectrometry-Olfactometry (GC-MS-O) and Two-Dimensional Gas Chromatography-Quadrupole Mass Spectrometry (GC × GC-qMS) Coupled with Sensory Molecular Science. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:25229-25250. [PMID: 39494627 DOI: 10.1021/acs.jafc.4c05811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Aroma dramatically impacts the overall flavor profiles and consumer acceptance; therefore, it is necessary to conduct a comprehensive analysis of the aroma characteristics of apples. In this study, the aroma differences among four popular apple varieties ("Ruixue", "Liangzhi", "Crystal Fuji," and "Guifei") were compared using two extraction methods (headspace-solid phase microextraction, and solvent-assisted flavor evaporation) coupled with gas chromatography-mass spectrometry-olfactometry (GC-MS-O) and two-dimensional gas chromatography-quadrupole mass spectrometry (GC × GC-qMS). A total of 82 odorants were identified via GC-MS-O, and 143 volatiles were identified by GC× GC-qMS. Among them, 41 key aroma-active compounds (butanal, ethyl acetate, 3-methylbutanal, methyl butanoate, 2-methylpropyl acetate, ethyl 2-methylbutanoate, ethyl 3-methylbutanoate, butyl acetate, hexanal, 2-methylbutyl acetate, 1-butanol, 2-methylpropyl butanoate, 3-methylbutyl acetate, (E)-2-hexenal, butyl butanoate, butyl 2-methylbutanoate, hexyl acetate, hexyl butanoate, hexyl, 2-methylbutanoate, 1-octen-3-ol, 3-methylthiopropanol, 1,3-octanediol, linalyl acetate, and so on) with high odor activity values (OAVs) and AI value (odor activity values ≥1 or aroma intensity ≥3) were identified. Partial least-squares-discriminant analysis showed that Ruixue exhibited a high "fruity" note, Guifei and Crystal Fuji had the greatest "wood," "floral," and "sweet" notes, while Liangzhi presented a significant "green" note. This study provided flavor chemistry support for the apple quality control and production.
Collapse
Affiliation(s)
- Ning Ma
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiancai Zhu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, People's Republic of China
| | - Heng Wang
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Michael C Qian
- Department of Food Science and Technology, Oregon State University, Corvallis, Oregon 97331, United States
| | - Zuobing Xiao
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
4
|
Lu X, Liu Z, Gao Y, Wang K, Sun S, Guo H, Tian W, Wang L, Li Z, Li L, Feng J, Wang D. Analysis of Aroma Characteristics of 'Binzi' and 'Xiangguo' Apple-Ancient Cultivars in China. Foods 2024; 13:2869. [PMID: 39335800 PMCID: PMC11431139 DOI: 10.3390/foods13182869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/07/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
'Binzi' (BZ) (Malus domestica subsp. chinensis var. binzi Li Y.N.) and 'Xiangguo' (XG) (Malus domestica subsp. chinensis var. xiangguo Li Y.N.) are the ancient cultivars in China. The BZ fruits have a low-fragrant flavor on harvest day but a high-fragrant flavor after storage at room temperature, while the XG fruits have a stronger flavor when mature. 'Starking' (SK) and 'Golden Delicious' (GD) fruits have a rich flavor and are recognized by all countries in the world. However, information on the differences between ancient Chinese cultivars and Western apple cultivars in aroma compounds remains unknown. The apple fruits were collected for continuous two years. Aroma compounds in the skin and pulp of the fruits were detected at room temperature (20 ± 1 °C) during storage. The dynamics of VOCs in BZ and SK fruits were more similarly reflected in esters, while those of XG and GD fruits were reflected in aldehydes and alcohols. Ethyl 2-methylbutyrate, with an extremely low odor threshold, was the main source of typical apple flavor in SK, BZ, and XG fruits, while hexyl acetate was the source of the banana flavor in GD fruits. 6-methyl-5-hepten-2-one and β-damascenone were the important ketones produced in the later stage of storage, derived from the carotenoid metabolism pathway and providing a citrus and rose flavor to the four apple cultivars. SK had the highest number of characteristic aroma components, which were mainly derived from the amino acid metabolism pathway, providing fruits with a sweet and fruity flavor. Although the characteristic aroma components of GD were derived from the fatty acid metabolic pathway, the number of volatile esters was lower. Ethyl butyrate, derived from the saturated fatty acid metabolism, had the highest content in BZ, providing a pineapple flavor; the flavor of XG was mainly derived from ethyl 2-methylbutyrate, 6-methyl-5-hepten-2-one, and β-damascenone. Therefore, we suggest BZ and XG apples as the aroma-breeding material with which to enrich new cultivars' aroma components, derived from the fatty acid metabolism and carotenoid metabolism pathways, respectively.
Collapse
Affiliation(s)
- Xiang Lu
- Xinjiang Production and Construction Corps Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization, College of Agriculture, Shihezi University, Shihezi 832000, China; (X.L.); (Z.L.); (W.T.)
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences/Key Laboratory of Horticultural Crops Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Xingcheng 125100, China; (Y.G.); (K.W.); (S.S.); (H.G.); (L.W.); (Z.L.); (L.L.)
| | - Zhao Liu
- Xinjiang Production and Construction Corps Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization, College of Agriculture, Shihezi University, Shihezi 832000, China; (X.L.); (Z.L.); (W.T.)
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences/Key Laboratory of Horticultural Crops Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Xingcheng 125100, China; (Y.G.); (K.W.); (S.S.); (H.G.); (L.W.); (Z.L.); (L.L.)
| | - Yuan Gao
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences/Key Laboratory of Horticultural Crops Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Xingcheng 125100, China; (Y.G.); (K.W.); (S.S.); (H.G.); (L.W.); (Z.L.); (L.L.)
| | - Kun Wang
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences/Key Laboratory of Horticultural Crops Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Xingcheng 125100, China; (Y.G.); (K.W.); (S.S.); (H.G.); (L.W.); (Z.L.); (L.L.)
| | - Simiao Sun
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences/Key Laboratory of Horticultural Crops Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Xingcheng 125100, China; (Y.G.); (K.W.); (S.S.); (H.G.); (L.W.); (Z.L.); (L.L.)
| | - Hanxin Guo
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences/Key Laboratory of Horticultural Crops Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Xingcheng 125100, China; (Y.G.); (K.W.); (S.S.); (H.G.); (L.W.); (Z.L.); (L.L.)
| | - Wen Tian
- Xinjiang Production and Construction Corps Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization, College of Agriculture, Shihezi University, Shihezi 832000, China; (X.L.); (Z.L.); (W.T.)
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences/Key Laboratory of Horticultural Crops Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Xingcheng 125100, China; (Y.G.); (K.W.); (S.S.); (H.G.); (L.W.); (Z.L.); (L.L.)
| | - Lin Wang
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences/Key Laboratory of Horticultural Crops Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Xingcheng 125100, China; (Y.G.); (K.W.); (S.S.); (H.G.); (L.W.); (Z.L.); (L.L.)
| | - Zichen Li
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences/Key Laboratory of Horticultural Crops Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Xingcheng 125100, China; (Y.G.); (K.W.); (S.S.); (H.G.); (L.W.); (Z.L.); (L.L.)
| | - Lianwen Li
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences/Key Laboratory of Horticultural Crops Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Xingcheng 125100, China; (Y.G.); (K.W.); (S.S.); (H.G.); (L.W.); (Z.L.); (L.L.)
| | - Jianrong Feng
- Xinjiang Production and Construction Corps Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization, College of Agriculture, Shihezi University, Shihezi 832000, China; (X.L.); (Z.L.); (W.T.)
| | - Dajiang Wang
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences/Key Laboratory of Horticultural Crops Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Xingcheng 125100, China; (Y.G.); (K.W.); (S.S.); (H.G.); (L.W.); (Z.L.); (L.L.)
| |
Collapse
|
5
|
Braschi G, Njieukam JA, Gottardi D, Genovese J, Tylewicz U, Patrignani F, Rocculi P. Investigating the potential of yacon ( Smallanthus sonchifolius) juice in the development of organic apple-based snacks. Heliyon 2024; 10:e32342. [PMID: 38947460 PMCID: PMC11214497 DOI: 10.1016/j.heliyon.2024.e32342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 05/31/2024] [Accepted: 06/02/2024] [Indexed: 07/02/2024] Open
Abstract
This study investigates the potential of yacon (Smallanthus sonchifolius) juice for the development of prebiotic-rich organic apple-based snacks. Yacon syrup, primarily composed of fructan, inulin, fructooligosaccharides (FOS), and free sugars, represents a promising nutraceutical product. Its great potential in food processing, particularly as an innovative source of prebiotics, has been demonstrated both in vitro and in vivo since it is fermented specifically by lactobacilli and bifidobacteria. Our objective was to explore the feasibility of employing vacuum impregnation process to incorporate yacon juice into organic apples, followed by hot air drying for the formulation of dried organic apple-based snacks with health-enhancing attributes. We assessed the prebiotic and physicochemical characteristics of the impregnated snacks, also considering 50 days of storage at room temperature. Vacuum impregnation and air drying produced dried apple slices impregnated with yacon juice with good quality and stability. Higher levels of fructan (16-fold difference compared to non-impregnated apples) in the apple slices increased their prebiotic potential, promoting the growth and viability of cells within simulated intestinal fluid, including strains of Bifidobacterium animalis subsp. lactis BB -12, Bifidobacterium breve DSM 20091, Bifidobacterium longum subsp. infantis DSM 20088, Lacticaseibacillus rhamnosus GG and Lacticaseibacillus rhamnosus C112, even after prolonged storage. Remarkably, the physicochemical parameters of the impregnated and dried apple slices remained nearly constant and akin to the control samples. Therefore, the combination of vacuum impregnation and air drying has the potential to be used to produce enriched prebiotic organic apple snacks, providing consumers with additional health benefits, including enhanced gut health, with its associated implications, and increased satiety. This innovation could contribute to the development of health-promoting food products with improved nutritional profiles.
Collapse
Affiliation(s)
- Giacomo Braschi
- Department of Agricultural and Food Sciences, Alma Mater Studiorum, University of Bologna, Campus of Food Science, Piazza Goidanich 60, 47521, Cesena, FC, Italy
| | - Joel Armando Njieukam
- Department of Agricultural and Food Sciences, Alma Mater Studiorum, University of Bologna, Campus of Food Science, Piazza Goidanich 60, 47521, Cesena, FC, Italy
| | - Davide Gottardi
- Department of Agricultural and Food Sciences, Alma Mater Studiorum, University of Bologna, Campus of Food Science, Piazza Goidanich 60, 47521, Cesena, FC, Italy
| | - Jessica Genovese
- Department of Food Environmental and Nutritional Sciences, University of Milan, Via Celoria 2, 20133, Milano, MI, Italy
| | - Urszula Tylewicz
- Department of Agricultural and Food Sciences, Alma Mater Studiorum, University of Bologna, Campus of Food Science, Piazza Goidanich 60, 47521, Cesena, FC, Italy
- Interdepartmental Centre for Agri-Food Industrial Research, Alma Mater Studiorum, University of Bologna: Campus of Food Science, Via Quinto Bucci 336, 47521, Cesena, FC, Italy
| | - Francesca Patrignani
- Department of Agricultural and Food Sciences, Alma Mater Studiorum, University of Bologna, Campus of Food Science, Piazza Goidanich 60, 47521, Cesena, FC, Italy
- Interdepartmental Centre for Agri-Food Industrial Research, Alma Mater Studiorum, University of Bologna: Campus of Food Science, Via Quinto Bucci 336, 47521, Cesena, FC, Italy
| | - Pietro Rocculi
- Department of Agricultural and Food Sciences, Alma Mater Studiorum, University of Bologna, Campus of Food Science, Piazza Goidanich 60, 47521, Cesena, FC, Italy
- Interdepartmental Centre for Agri-Food Industrial Research, Alma Mater Studiorum, University of Bologna: Campus of Food Science, Via Quinto Bucci 336, 47521, Cesena, FC, Italy
| |
Collapse
|
6
|
Demiwal P, Mir JI, Sircar D. A non-invasive method for phenotyping scab-tolerant apple plants using volatile organic compounds. PHYSIOLOGIA PLANTARUM 2024; 176:e14377. [PMID: 38837251 DOI: 10.1111/ppl.14377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 04/09/2024] [Accepted: 04/16/2024] [Indexed: 06/07/2024]
Abstract
One of the most devastating diseases of apples is scab, caused by the fungus Venturia inaequalis. Most commercial apple varieties are susceptible to this disease; only a few are resistant. Breeding approaches are being used to develop better apple varieties that are resistant to scab. Volatile organic compounds (VOCs) contribute greatly to a plant's phenotype, and their emission profile largely depends on the genotype. In the non-destructive phenotyping of plants, VOCs can be used as biomarkers. In this study, we assessed non-destructively the scab tolerance potential of resistant (cv. 'Prima') and susceptible (cv. 'Oregon Spur') apple cultivars by comparing their major leaf VOC compositions and relative proportions. A comparison of the leaf VOC profiles of the two cultivars revealed 16 different VOCs, with cis-3-hexenyl acetate (3HA) emerging as a biomarker of cultivar differences. V. inaequalis growth was significantly inhibited in vitro by 3HA treatment. 3HA was significantly effective in reducing scab symptoms on V. inaequalis-inoculated leaves of 'Oregon Spur.' The resistant cultivar 'Prima' also exhibited higher lipoxygenase (LOX) activity and α-linolenic acid (ALA) levels, suggesting that V. inaequalis resistance is linked to LOX activity and 3HA biosynthesis. This study proposes 3HA as a potential biomarker for rapid non-destructive screening of scab-resistant apple germplasm of 'Prima' based on leaf VOCs.
Collapse
Affiliation(s)
- Pratibha Demiwal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Javid Iqbal Mir
- Central Institute of Temperate Horticulture (ICAR-CITH), Srinagar, J&K, India
| | - Debabrata Sircar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| |
Collapse
|
7
|
Xu Y, Gao G, Tian L, Cao Y, Dong X, Huo H, Qi D, Zhang Y, Xu J, Liu C. Changes of Volatile Organic Compounds of Different Flesh Texture Pears during Shelf Life Based on Headspace Solid-Phase Microextraction with Gas Chromatography-Mass Spectrometry. Foods 2023; 12:4224. [PMID: 38231607 DOI: 10.3390/foods12234224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/19/2023] [Accepted: 11/20/2023] [Indexed: 01/19/2024] Open
Abstract
Aroma is an important sensory factor in evaluating the quality of pear fruits. This study used headspace solid-phase microextraction (HS-SPME) combined with gas chromatography-mass spectrometry (GC-MS) to analyze the volatile organic compounds (VOCs) of three crispy pears and five soft pears during shelf life, and the changes in soluble solids content (SSC) were analyzed. The results showed that the SSC of the soft pears such as Nanguoli, Jingbaili and Louis was always higher than that of the crispy pears throughout shelf life. A total of 160 VOCs were detected in the eight pear varieties. Orthogonal partial least squares discriminant analysis (OPLS-DA) and hierarchical cluster analysis (HCA) combined with predictor variable importance projection (VIP) showed that the eight pear varieties could be obviously classified into six groups according to the differences in their VOCs, and 31 differential VOCs were screened out, which could be used to differentiate between pears with different flesh textures. The results of clustering heat map analysis showed that, with the extension of shelf life, the content of each different VOC did not change much in crispy pears, whereas the difference in soft pears was larger. This study confirmed the potential of determining the optimal shelf life of different pear varieties about aroma evaluation and studying the mechanism of differences in VOCs in the future.
Collapse
Affiliation(s)
- Yuqing Xu
- Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng 125100, China
- Key Laboratory of Germplasm Resources Utilization of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Xingcheng 125100, China
| | - Guanwei Gao
- Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng 125100, China
- Key Laboratory of Germplasm Resources Utilization of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Xingcheng 125100, China
| | - Luming Tian
- Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng 125100, China
- Key Laboratory of Germplasm Resources Utilization of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Xingcheng 125100, China
| | - Yufen Cao
- Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng 125100, China
- Key Laboratory of Germplasm Resources Utilization of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Xingcheng 125100, China
| | - Xingguang Dong
- Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng 125100, China
- Key Laboratory of Germplasm Resources Utilization of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Xingcheng 125100, China
| | - Hongliang Huo
- Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng 125100, China
- Key Laboratory of Germplasm Resources Utilization of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Xingcheng 125100, China
| | - Dan Qi
- Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng 125100, China
- Key Laboratory of Germplasm Resources Utilization of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Xingcheng 125100, China
| | - Ying Zhang
- Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng 125100, China
- Key Laboratory of Germplasm Resources Utilization of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Xingcheng 125100, China
| | - Jiayu Xu
- Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng 125100, China
- Key Laboratory of Germplasm Resources Utilization of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Xingcheng 125100, China
| | - Chao Liu
- Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng 125100, China
- Key Laboratory of Germplasm Resources Utilization of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Xingcheng 125100, China
| |
Collapse
|
8
|
Xu L, Zang E, Sun S, Li M. Main flavor compounds and molecular regulation mechanisms in fruits and vegetables. Crit Rev Food Sci Nutr 2023; 63:11859-11879. [PMID: 35816297 DOI: 10.1080/10408398.2022.2097195] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Fruits and vegetables (F&V) are an indispensable part of a healthy diet. The volatile and nonvolatile compounds present in F&V constitute unique flavor substances. This paper reviews the main flavor substances present in F&V, as well as the biosynthetic pathways and molecular regulation mechanisms of these compounds. A series of compounds introduced include aromatic substances, soluble sugars and organic acids, which constitute the key flavor substances of F&V. Esters, phenols, alcohols, amino acids and terpenes are the main volatile aromatic substances, and nonvolatile substances are represented by amino acids, fatty acids and carbohydrates; The combination of these ingredients is the cause of the sour, sweet, bitter, astringent and spicy taste of these foods. This provides a theoretical basis for the study of the interaction between volatile and nonvolatile substances in F&V, and also provides a research direction for the healthy development of food in the future.
Collapse
Affiliation(s)
- Ling Xu
- School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Erhuan Zang
- Inner Mongolia Key Laboratory of Characteristic Geoherbs Resources Protection and Utilization, Baotou Medical College, Baotou, China
| | - Shuying Sun
- School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Minhui Li
- School of Life Sciences, Inner Mongolia University, Hohhot, China
- Inner Mongolia Key Laboratory of Characteristic Geoherbs Resources Protection and Utilization, Baotou Medical College, Baotou, China
- Inner Mongolia Hospital of Traditional Chinese Medicine, Hohhot, China
- Inner Mongolia Traditional Chinese and Mongolian Medical Research Institute, Hohhot, China
| |
Collapse
|
9
|
Zhang M, Yin Y, Li Y, Jiang Y, Hu X, Yi J. Chemometric Classification of Apple Cultivars Based on Physicochemical Properties: Raw Material Selection for Processing Applications. Foods 2023; 12:3095. [PMID: 37628094 PMCID: PMC10453866 DOI: 10.3390/foods12163095] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/11/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Apple cultivars exhibit significant diversity in fruit quality traits, creating distinct consumption scenarios. This study aimed to assess the physicochemical parameters and sensory attributes differences among fifteen apple cultivars and identify characteristic qualities suitable for various processed apple products using chemometric analysis. Relatively large differences were registered between cultivars for deflection, peel color, titratable acidity (TA), the ratio of total soluble solid to titratable acidity (TSS/TA), hardness, soluble sugar, and volatile organic compound contents. Sensory results showed significant differences existed among the preferences for different processed products. Based on the above results, all cultivars could be distinguished into three main clusters. Cluster I (i.e., Aziteke, Bakeai, Magic Flute, Royal Gala, Red General, Red Delicious, and Zhongqiuwang) demonstrated favorable appearance, high sensory scores, and rich aroma volatile compounds, making them suitable for direct consumption. Cluster II (i.e., Fuburuisi, Sinike, Honglu, and Huashuo) exhibited a higher sugar and acid content, making them suitable for apple juice production. Cluster III (i.e., Miqila, Honey Crisp, Shandong Fuji, and Yanfu 3) were more suitable for fresh-cut apples due to their good flavor and undesirable appearance. Several chemometric analyses effectively assessed differences among apple cultivars.
Collapse
Affiliation(s)
- Maiqi Zhang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (M.Z.); (Y.Y.); (Y.L.); (Y.J.); (X.H.)
- Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming 650500, China
- International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China
| | - Yihao Yin
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (M.Z.); (Y.Y.); (Y.L.); (Y.J.); (X.H.)
- Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming 650500, China
- International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China
| | - Yantong Li
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (M.Z.); (Y.Y.); (Y.L.); (Y.J.); (X.H.)
- Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming 650500, China
- International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China
| | - Yongli Jiang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (M.Z.); (Y.Y.); (Y.L.); (Y.J.); (X.H.)
- Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming 650500, China
- International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China
| | - Xiaosong Hu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (M.Z.); (Y.Y.); (Y.L.); (Y.J.); (X.H.)
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Junjie Yi
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (M.Z.); (Y.Y.); (Y.L.); (Y.J.); (X.H.)
- Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming 650500, China
- International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China
| |
Collapse
|
10
|
Hou X, Jiang J, Luo C, Rehman L, Li X, Xie X. Advances in detecting fruit aroma compounds by combining chromatography and spectrometry. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:4755-4766. [PMID: 36782102 DOI: 10.1002/jsfa.12498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/13/2023] [Accepted: 02/13/2023] [Indexed: 06/08/2023]
Abstract
Fruit aroma is produced by volatile compounds, which can significantly enhance fruit flavor. These compounds are highly complex and have remarkable pharmacological effects. The synthesis, concentration, type, and quantity of fruit aroma substances are affected by various factors, both abiotic and biotic. To fully understand the aroma substances of various fruits and their influencing factors, detection technology can be used. Many methods exist for detecting aroma compounds, and approaches combining multiple instruments are widely used. This review describes and compares each detection technology and discusses the potential use of combined technologies to provide a comprehensive understanding of fruit aroma compounds and the factors influencing their synthesis. These results can inform the development and utilization of fruit aroma substances. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiaolong Hou
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang, PR China
| | - Junmei Jiang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, PR China
| | - Changqing Luo
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang, PR China
| | - Latifur Rehman
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang, PR China
- Department of Biotechnology, University of Swabi, Swabi, Pakistan
| | - Xiangyang Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, PR China
| | - Xin Xie
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang, PR China
| |
Collapse
|
11
|
Grabska J, Beć KB, Ueno N, Huck CW. Analyzing the Quality Parameters of Apples by Spectroscopy from Vis/NIR to NIR Region: A Comprehensive Review. Foods 2023; 12:foods12101946. [PMID: 37238763 DOI: 10.3390/foods12101946] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/04/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Spectroscopic methods deliver a valuable non-destructive analytical tool that provides simultaneous qualitative and quantitative characterization of various samples. Apples belong to the world's most consumed crops and with the current challenges of climate change and human impacts on the environment, maintaining high-quality apple production has become critical. This review comprehensively analyzes the application of spectroscopy in near-infrared (NIR) and visible (Vis) regions, which not only show particular potential in evaluating the quality parameters of apples but also in optimizing their production and supply routines. This includes the assessment of the external and internal characteristics such as color, size, shape, surface defects, soluble solids content (SSC), total titratable acidity (TA), firmness, starch pattern index (SPI), total dry matter concentration (DM), and nutritional value. The review also summarizes various techniques and approaches used in Vis/NIR studies of apples, such as authenticity, origin, identification, adulteration, and quality control. Optical sensors and associated methods offer a wide suite of solutions readily addressing the main needs of the industry in practical routines as well, e.g., efficient sorting and grading of apples based on sweetness and other quality parameters, facilitating quality control throughout the production and supply chain. This review also evaluates ongoing development trends in the application of handheld and portable instruments operating in the Vis/NIR and NIR spectral regions for apple quality control. The use of these technologies can enhance apple crop quality, maintain competitiveness, and meet the demands of consumers, making them a crucial topic in the apple industry. The focal point of this review is placed on the literature published in the last five years, with the exceptions of seminal works that have played a critical role in shaping the field or representative studies that highlight the progress made in specific areas.
Collapse
Affiliation(s)
- Justyna Grabska
- Institute of Analytical Chemistry and Radiochemistry, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Krzysztof B Beć
- Institute of Analytical Chemistry and Radiochemistry, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Nami Ueno
- Institute of Analytical Chemistry and Radiochemistry, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Christian W Huck
- Institute of Analytical Chemistry and Radiochemistry, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| |
Collapse
|
12
|
Yang S, Yu J, Yang H, Zhao Z. Genetic analysis and QTL mapping of aroma volatile compounds in the apple progeny 'Fuji' × 'Cripps Pink'. FRONTIERS IN PLANT SCIENCE 2023; 14:1048846. [PMID: 37021304 PMCID: PMC10067597 DOI: 10.3389/fpls.2023.1048846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 02/01/2023] [Indexed: 06/19/2023]
Abstract
Aroma is an essential trait for apple fruit quality, but the understanding of biochemical mechanisms underlying aroma formation is still limited. To better characterize and assess the genetic potential for improving aroma quality for breeding, many efforts have been paid to map quantitative trait loci (QTLs) using a saturated molecular linkage map. In the present study, aroma profiles in ripe fruit of F1 population between 'Fuji' and 'Cripps Pink' were evaluated by gas chromatography-mass spectrometry (GC-MS) over 2019 and 2020 years, and the genetics of volatile compounds were dissected. In total, 38 volatile compounds were identified in 'Fuji' × 'Cripps Pink' population, including 23 esters, 3 alcohols, 7 aldehydes and 5 others. With the combination of aroma phenotypic data and constructed genetic linkage map, 87 QTLs were detected for 15 volatile compounds on 14 linkage groups (LGs). Among them, a set of QTLs associated with ester production identified and confirmed on LG 6. A candidate gene MdAAT6 in the QTL mapping interval was detected. Over-expression of MdAAT6 in tomato and apple fruits showed significantly higher esters accumulation compared to the control, indicating it was critical for the ester production. Our results give light on the mode of inheritance of the apple volatilome and provide new insights for apple flavor improvement in the future.
Collapse
Affiliation(s)
- Shunbo Yang
- College of Horticulture, Northwest A & F University, Yangling, China
| | - Jing Yu
- College of Horticulture, Northwest A & F University, Yangling, China
| | - Huijuan Yang
- College of Horticulture, Northwest A & F University, Yangling, China
| | - Zhengyang Zhao
- College of Horticulture, Northwest A & F University, Yangling, China
- Shaanxi Research Center of Apple Engineering and Technology, Yangling, China
| |
Collapse
|
13
|
Influence of Cultivar and Turbidity on Physicochemical Properties, Functional Characteristics and Volatile Flavor Substances of Pomelo Juices. Foods 2023; 12:foods12051028. [PMID: 36900544 PMCID: PMC10000981 DOI: 10.3390/foods12051028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/11/2023] [Accepted: 02/14/2023] [Indexed: 03/04/2023] Open
Abstract
In this study, the influences of pomelo cultivars on physicochemical properties, functional characteristics, and volatile compounds of juices were investigated. Among these six varieties, the highest juice yield (73.22%) was obtained in grapefruit. Sucrose and citric acid were the main sugar component and organic acid of pomelo juices, respectively. The results showed that the cv. Pingshanyu pomelo juice and grapefruit juice had the highest sucrose (87.14 g L-1, 97.69 g L-1) and citric acid content (14.49 g L-1, 13.7 g L-1), respectively. Moreover, the naringenin was the main flavonoid of pomelo juice. Additionally, the total phenolics, total flavonoids, and ascorbic acid concentrations of grapefruit and cv. Wendanyu pomelo juice were higher than those of other varieties of pomelo juices. Furthermore, 79 volatile substances were identified from the juices of six pomelo cultivars. Hydrocarbons were the predominant volatile substances, and the limonene was the characteristic hydrocarbon substance of pomelo juice. In addition, the pulp content of pomelo juice also presented great effects on its quality and volatile compounds composition. Compared to low pulp juice, the corresponding high pulp juice had higher sucrose, pH, total soluble solid, acetic acid, viscosity, bioactive substances and volatile substances. The effects of cultivars and variation in turbidity on juice are highlighted. It is useful for pomelo breeders, packers and processors to understand the quality of the pomelo they are working with. This work could provide valuable information on selecting suitable pomelo cultivars for juice processing.
Collapse
|
14
|
Zhang S, Xiao Y, Jiang Y, Wang T, Cai S, Hu X, Yi J. Effects of Brines and Containers on Flavor Production of Chinese Pickled Chili Pepper ( Capsicum frutescens L.) during Natural Fermentation. Foods 2022; 12:foods12010101. [PMID: 36613316 PMCID: PMC9818826 DOI: 10.3390/foods12010101] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/13/2022] [Accepted: 12/16/2022] [Indexed: 12/28/2022] Open
Abstract
The effects of (fresh/aged) brine and (pool/jar) containers on the flavor characteristics of pickled chili peppers were investigated based on a multivariate analysis integrated with kinetics modeling. The results showed that the effect of brine on organic acid, sugar, and aroma was more dominant than that of containers, while free amino acids production was more affected by containers than brines. Chili pepper fermented using aged brine exhibited higher acidity (3.71−3.92) and sugar (7.92−8.51 mg/g) than that using fresh brine (respective 3.79−3.96; 6.50−9.25 mg/g). Besides, chili peppers fermented using pool containers showed higher free amino acids content (424.74−478.82 mg/100 g) than using a jar (128.77−242.90 mg/100 g), particularly with aged brine. As for aroma, the number of volatiles in aged brine was higher (88−96) than that in fresh brine (76−80). The contents of the esters, alcohols, and ketones were significantly higher in the aged brine samples than those in fresh brine (p < 0.05), while terpenes in chili pepper fermented using the pool were higher than those using the jar. In general, jar fermentation with aged brine contributed more flavor to pickled chili peppers than other procedures.
Collapse
Affiliation(s)
- Shiyao Zhang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming 650500, China
| | - Yue Xiao
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming 650500, China
| | - Yongli Jiang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming 650500, China
| | - Tao Wang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming 650500, China
| | - Shengbao Cai
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming 650500, China
| | - Xiaosong Hu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming 650500, China
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Junjie Yi
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming 650500, China
- Correspondence: ; Tel.: +86-15810687441
| |
Collapse
|
15
|
Mihaylova D, Popova A, Dincheva I. Pattern Recognition of Varieties of Peach Fruit and Pulp from Their Volatile Components and Metabolic Profile Using HS-SPME-GC/MS Combined with Multivariable Statistical Analysis. PLANTS (BASEL, SWITZERLAND) 2022; 11:3219. [PMID: 36501259 PMCID: PMC9737851 DOI: 10.3390/plants11233219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
A fruit's aroma profile, composed of a complex mixture of volatile organic compounds, is among the core attributes related to the overall taste and consumer preference. Prunus persica L. is a preferred summer fruit with a distinct, favorable olfactory characteristic. The volatile compositions of both peach fruits and fruit pulps from eight peach cultivars (four native and four introduced) was investigated to compare their composition and assess flavor-contributing compounds. In total, 65 compounds were profiled after a HS-SPME-GC-MS analysis: 16 esters, 14 aldehydes, 5 alcohols, 7 hydrocarbons, 7 ketones, 8 acids, and 8 terpenes. The most common compounds were esters, acids, and aldehydes. Although the same compounds were identified in both fruit and pulp, their %TIC (total ion current) differed in favor of the whole fruit. Following the metabolic profiling of the whole fruit and fruit pulp, a total of 44 compounds were identified from the studied varieties. Among them, amino acids, organic acids, sugar alcohols, saccharides, fatty acids, and phenolic acids were identified as existing groups. According to the provided principal component analysis (PCA) and hierarchical cluster analysis (HCA), the relative %TIC of the identified volatile compounds fluctuated depending on the studied cultivar. No differences were visible in the PCA biplots, which suggested that the polar and lipid metabolites do not provide significant variations when considering different parts of the fruit, contrary to the volatile compounds. The obtained results could successfully be applied in the metabolic chemotaxonomy of peaches and the differentiation of the metabolites present in different parts of the peach.
Collapse
Affiliation(s)
- Dasha Mihaylova
- Department of Biotechnology, Technological Faculty, University of Food Technologies, 4002 Plovdiv, Bulgaria
| | - Aneta Popova
- Department of Catering and Nutrition, Economics Faculty, University of Food Technologies, 4002 Plovdiv, Bulgaria
| | - Ivayla Dincheva
- Department of Agrobiotechnologies, AgroBioInstitute, Agricultural Academy, 1164 Sofia, Bulgaria
| |
Collapse
|
16
|
Gao G, Zhang X, Yan Z, Cheng Y, Li H, Xu G. Monitoring Volatile Organic Compounds in Different Pear Cultivars during Storage Using HS-SPME with GC-MS. Foods 2022; 11:foods11233778. [PMID: 36496586 PMCID: PMC9735802 DOI: 10.3390/foods11233778] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/16/2022] [Accepted: 11/19/2022] [Indexed: 11/25/2022] Open
Abstract
Aroma, which plays an essential role in food perception and acceptability, depends on various mixture of volatile organic compounds (VOCs). Meanwhile, as a field of metabolomics, VOC analysis is highly important for aroma improvement and discrimination purposes. In this work, VOCs in pear fruits were determined via headspace solid-phase micro-extraction (HS-SPME) combined with gas chromatography-mass spectrometry (GC-MS) to study variations among different cultivars and storage stages. In 12 cultivars of pear fruits, a total of 121 VOCs were quantified, including 40 esters, 32 alcohols, 16 aldehydes, 13 alkenes, 11 ketones, 4 acids, and 5 other compounds. The types and amounts of VOCs in different cultivars varied dramatically, which were in the range of 13-71 and 3.63-55.65 mg/kg FW (fresh weight), respectively. The Dr. Guyot cultivar showed the highest level of VOCs, both in type and amount. After 21 days storage at 4 °C, total concentration of VOCs increased from initial levels of 50.76 to 101.33 mg/kg FW. Storage at 20 °C made a larger contribution to production for VOCs than that at 4 °C, resulting in the maximum content of VOCs (117.96 mg/kg FW) in fruit after 14 days storage at 4 °C plus 7 days at 20 °C. During storage, the content of esters showed a gradual increase, while the content of alcohols and aldehydes decreased. Based on the results presented, related alcohols were recognized as the intermediates of conversion from aldehydes to esters.
Collapse
Affiliation(s)
- Guanwei Gao
- Ministry of Agriculture and Rural Affairs, Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng 125100, China
- Laboratory of Quality & Safety Risk Assessment for Fruit, Xingcheng 125100, China
| | - Xinnan Zhang
- Ministry of Agriculture and Rural Affairs, Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng 125100, China
- Key Laboratory of Germplasm Resources Utilization of Horticultural Crops, Ministry of Agriculture and Rural Afffairs, Xingcheng 125100, China
| | - Zhen Yan
- Ministry of Agriculture and Rural Affairs, Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng 125100, China
- Laboratory of Quality & Safety Risk Assessment for Fruit, Xingcheng 125100, China
| | - Yang Cheng
- Ministry of Agriculture and Rural Affairs, Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng 125100, China
- Laboratory of Quality & Safety Risk Assessment for Fruit, Xingcheng 125100, China
| | - Haifei Li
- Ministry of Agriculture and Rural Affairs, Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng 125100, China
- Laboratory of Quality & Safety Risk Assessment for Fruit, Xingcheng 125100, China
| | - Guofeng Xu
- Ministry of Agriculture and Rural Affairs, Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng 125100, China
- Laboratory of Quality & Safety Risk Assessment for Fruit, Xingcheng 125100, China
- Correspondence:
| |
Collapse
|
17
|
Headspace Solid-Phase Micro-extraction for Determination of Volatile Organic Compounds in Apple Using Gas Chromatography–Mass Spectrometry. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-022-02324-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
18
|
Mostafa S, Wang Y, Zeng W, Jin B. Floral Scents and Fruit Aromas: Functions, Compositions, Biosynthesis, and Regulation. FRONTIERS IN PLANT SCIENCE 2022; 13:860157. [PMID: 35360336 PMCID: PMC8961363 DOI: 10.3389/fpls.2022.860157] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 02/09/2022] [Indexed: 05/27/2023]
Abstract
Floral scents and fruit aromas are crucial volatile organic compounds (VOCs) in plants. They are used in defense mechanisms, along with mechanisms to attract pollinators and seed dispersers. In addition, they are economically important for the quality of crops, as well as quality in the perfume, cosmetics, food, drink, and pharmaceutical industries. Floral scents and fruit aromas share many volatile organic compounds in flowers and fruits. Volatile compounds are classified as terpenoids, phenylpropanoids/benzenoids, fatty acid derivatives, and amino acid derivatives. Many genes and transcription factors regulating the synthesis of volatiles have been discovered. In this review, we summarize recent progress in volatile function, composition, biosynthetic pathway, and metabolism regulation. We also discuss unresolved issues and research perspectives, providing insight into improvements and applications of plant VOCs.
Collapse
Affiliation(s)
- Salma Mostafa
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
- Department of Floriculture, Faculty of Agriculture, Alexandria University, Alexandria, Egypt
| | - Yun Wang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Wen Zeng
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Biao Jin
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| |
Collapse
|
19
|
Yang S, Li D, Li S, Yang H, Zhao Z. GC-MS Metabolite and Transcriptome Analyses Reveal the Differences of Volatile Synthesis and Gene Expression Profiling between Two Apple Varieties. Int J Mol Sci 2022; 23:2939. [PMID: 35328360 PMCID: PMC8951106 DOI: 10.3390/ijms23062939] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/06/2022] [Accepted: 03/08/2022] [Indexed: 01/16/2023] Open
Abstract
Aroma is a key quality attribute of apples, making major contributions to commercial value and consumer choice. However, the mechanism underlying molecular regulation of aroma formation genes and transcription factors remains poorly understood in apples. Here, we investigated the aroma volatile profiles of two apple varieties with distinctive flavors using headspace solid-phase microextraction (HS-SPME) combined with gas chromatography-mass spectrometry (GC-MS). A total of 35 volatile compounds were identified in Granny Smith and Jonagold apples. Aldehydes were the most abundant volatiles contributing to the aroma in Granny Smith apple while esters were the dominant volatile compounds in Jonagold apple. In order to know more about the expression levels of aroma-related genes involved in the metabolic pathways, transcriptome sequencing of these two different apple varieties was conducted utilizing the Illumina platform. In total, 94 differentially expressed genes (DEGs) were found in the fatty acid metabolism, amino acid metabolism, the mevalonate pathway and phenylpropanoid pathway. Furthermore, compared to the Granny Smith apple, the expression of multiple genes and transcription factors were upregulated in the Jonagold apple, which might play important roles in the synthesis of aroma volatile compounds. Our study contributes toward better understanding on the molecular mechanism of aroma synthesis in apples and provides a valuable reference for metabolic engineering and flavor improvement in the future.
Collapse
Affiliation(s)
- Shunbo Yang
- College of Horticulture, Northwest A & F University, Yangling 712100, China; (S.Y.); (D.L.); (S.L.)
| | - Dongmei Li
- College of Horticulture, Northwest A & F University, Yangling 712100, China; (S.Y.); (D.L.); (S.L.)
| | - Shanshan Li
- College of Horticulture, Northwest A & F University, Yangling 712100, China; (S.Y.); (D.L.); (S.L.)
| | - Huijuan Yang
- College of Horticulture, Northwest A & F University, Yangling 712100, China; (S.Y.); (D.L.); (S.L.)
| | - Zhengyang Zhao
- College of Horticulture, Northwest A & F University, Yangling 712100, China; (S.Y.); (D.L.); (S.L.)
- Shaanxi Engineering Research Center of Apple, Yangling 712100, China
| |
Collapse
|
20
|
Analyzing the Effect of Baking on the Flavor of Defatted Tiger Nut Flour by E-Tongue, E-Nose and HS-SPME-GC-MS. Foods 2022; 11:foods11030446. [PMID: 35159596 PMCID: PMC8834115 DOI: 10.3390/foods11030446] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/20/2022] [Accepted: 01/30/2022] [Indexed: 12/04/2022] Open
Abstract
In order to screen for a proper baking condition to improve flavor, in this experiment, we analyzed the effect of baking on the flavor of defatted tiger nut flour by electronic tongue (E-tongue), electronic nose (E-nose) and headspace solid-phase microextraction gas chromatography-mass spectrometry (HS-SPME-GC-MS). According to E-tongue and E-nose radar plots and principal component analysis (PCA), baking can effectively change the taste and odor of defatted tiger nut flour, and the odors of samples with a baking time of >8 min were significantly different from the original odor of unbaked flour. Moreover, bitterness and astringency increased with longer baking times, and sweetness decreased. HS-SPME-GC-MS detected a total of 68 volatile organic compounds (VOCs) in defatted tiger nut flour at different baking levels, and most VOCs were detected at 8 min of baking. Combined with the relative odor activity value (ROAV) and heat map analysis, the types and contents of key flavor compounds were determined to be most abundant at 8 min of baking; 3-methyl butyraldehyde (fruity and sweet), valeraldehyde (almond), hexanal (grassy and fatty), and 1-dodecanol, were the key flavor compounds. 2,5-dimethyl pyrazine, and pyrazine, 2-ethylalkyl-3,5-dimethyl- added nutty aromas, and 1-nonanal, 2-heptanone, octanoic acid, bicyclo [3.1.1]hept-3-en-2-ol,4,6,6-trimethyl-, and 2-pentylfuran added special floral and fruity aromas.
Collapse
|
21
|
Young Jeong J, Atikul Islam M, Khan N, Jamila N, Hong JH, Kim KS. Simultaneous Distillation Extraction (SDE) and Headspace Solid-Phase Microextraction (HS-SPME) for the Determination of Volatile Organic Compounds (VOCs) by Gas Chromatography – Mass Spectrometry (GC-MS) in Perilla Frutescens Foliage from South Korea. ANAL LETT 2021. [DOI: 10.1080/00032719.2021.2018451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Ji Young Jeong
- Department of Food and Nutrition, Chosun University, Gwangju, Republic of Korea
| | - Md. Atikul Islam
- Department of Food and Nutrition, Chosun University, Gwangju, Republic of Korea
- Department of Chemistry, Hajee Mohammad Danesh Science and Technology University, Dinajpur, Bangladesh
| | - Naeem Khan
- Department of Chemistry, Kohat University of Science & Technology, Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Nargis Jamila
- Department of Chemistry, Shaheed Benazir Bhutto Women University, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Joon Ho Hong
- Nanobio Research Center, Jeonnam Bioindustry Foundation (JBF), Jeollanam-do, South Korea
| | - Kyong Su Kim
- Department of Food and Nutrition, Chosun University, Gwangju, Republic of Korea
| |
Collapse
|
22
|
Simple and Effective Characterization of Fuji Apple Flavor Quality by Ethylene and Sugar Content. FOOD ANAL METHOD 2021. [DOI: 10.1007/s12161-021-02085-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|