1
|
Xiong Y, Zhang Y, Yi C, Shan Y, Zhu H, Fang Z. Effects of rolling on eating quality, starch structure, and water distribution in cooked indica rice dough. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:3045-3051. [PMID: 39655461 DOI: 10.1002/jsfa.14068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 10/10/2024] [Accepted: 11/25/2024] [Indexed: 03/16/2025]
Abstract
BACKGROUND Given the composition of rice and its lack of gluten proteins, rice flour fails to form a cohesive and elastic dough when mixed directly with water. Consequently, many rice products rely on rice sheets (RS) made by rolling cooked rice dough. Limited research exists on how the rolling process impacts the properties and structure of cooked indica rice dough. RESULTS This study investigated the effect of the number of rolling passes on the eating quality, starch structure, and water distribution of cooked fermented indica RS formed by dough. When the number of rolling passes reached six, the RS (RP-6) that was obtained exhibited the lowest cooking loss, the highest hardness, adhesiveness, and chewiness, and optimal stretchability. It also demonstrated the lowest water loss after freezing. Dense microstructures were observed on both the surface and cross-section of RP-6. More ordered starch crystal structures and double helix structures were formed. The relative peak area of tightly bound water significantly increased in RP-6, indicating a stronger bonding status between the starch and water molecules. However, excessive rolling passes (more than six) led to a partial disruption of the internal RS structure, resulting in a decline in eating quality. CONCLUSION The study demonstrated the importance of the rolling process in improving the performance of RS. It was found that a moderate number of rolling passes was conducive to producing excellent RS, providing a theoretical basis for the production of high-quality rice-based products such as rice noodles, dumplings, and cakes. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ying Xiong
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha, China
| | - Yu Zhang
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha, China
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Cuiping Yi
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha, China
| | - Yang Shan
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Hong Zhu
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha, China
| | - Zhongxiang Fang
- School of Agriculture, Food and Ecosystem Sciences, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
2
|
Cao Z, Zhou L, Gao S, Yang C, Meng X, Liu Z. Effects of different amounts of okara on texture, digestive properties, and microstructure of noodles. Food Sci Nutr 2024; 12:3433-3442. [PMID: 38726422 PMCID: PMC11077229 DOI: 10.1002/fsn3.4007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/30/2023] [Accepted: 01/23/2024] [Indexed: 05/12/2024] Open
Abstract
As a byproduct of manufacturing soybeans, okara is high in dietary fiber, protein, and fats, and it contains all of the essential amino acids. Wheat, the primary ingredient in noodles, will lose nutrients during manufacturing, creating an imbalance in nutrients. This experiment is for the purpose of studying the effects of okara on quality, antioxidant properties, amino acid content, resistant starch (RS) content, and microstructure of noodles. The results indicate that the addition of 9% okara noodles increased hardness and adhesiveness by 107.19% and 132.14%, respectively, and improved ABTS free radical scavenging activity by 60.78%. The addition of 12% okara noodles increased the DPPH free radical scavenging ability by 23.66%, reduced the rapidly digestible starch (RDS) content of the noodles to 21.21%, and the resistant starch content increased to 44.85% (p < .05). Therefore, to address the issue of nutritional imbalance in wheat noodles without compromising the quality of the noodles, it is recommended to add 9% or 12% okara for the preparation of nutritionally fortified noodles.
Collapse
Affiliation(s)
- Zhongwen Cao
- School of Tourism and CuisineYangzhou UniversityYangzhouChina
- Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology InheritanceMinistry of Culture and TourismYangzhouChina
| | - Lingchen Zhou
- School of Food and EngineeringYangzhou UniversityYangzhouChina
| | - Sumin Gao
- School of Tourism and CuisineYangzhou UniversityYangzhouChina
- Engineering Technology Research Center of Yangzhou Prepared CuisineYangzhouChina
| | - Cheng Yang
- School of Food and EngineeringYangzhou UniversityYangzhouChina
- Engineering Technology Research Center of Yangzhou Prepared CuisineYangzhouChina
| | - Xiangren Meng
- School of Tourism and CuisineYangzhou UniversityYangzhouChina
- Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology InheritanceMinistry of Culture and TourismYangzhouChina
- Engineering Technology Research Center of Yangzhou Prepared CuisineYangzhouChina
| | - Zhao Liu
- Fuzhou PolytechnicFuzhou PolytechnicFuzhouChina
| |
Collapse
|
3
|
Lyu Q, Wang X, Dang Y, Zhu L, Chen L, Wang X, Ding W. Evaluation Method of Texture of Glutinous Rice Cakes (Niangao) and Its Key Impact Indicators. Foods 2024; 13:621. [PMID: 38397598 PMCID: PMC10888210 DOI: 10.3390/foods13040621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/13/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
This study aimed to find a unique method to assess the textural properties of Niangao (glutinous rice cakes), to determine the relationship between the textural properties of rice cakes and the indicators of glutinous rice, and to identify the key indicators that significantly affect the textural properties of Niangao. The study encompassed the analysis of the chemical composition and pasting characteristics of 22 glutinous rice varieties, revealing the substantial impact of variety on lipid content, straight-chain starch content, and pasting performance. Subsequently, the textural features of the resulting Niangao were subjected to principal component analysis (PCA) to derive a mathematical method for evaluating their textural attributes, with the obtained scores employed in hierarchical cluster analysis (HCA) to identify 12 key textural characteristics. Further analysis using stepwise linear regression (SLR) demonstrated that the regression model incorporating final and peak viscosities of the glutinous rice significantly predicted the composite score of the Niangao's textural properties. This highlights the importance of final and peak viscosities as key indicators for assessing the textural quality of Niangao.
Collapse
Affiliation(s)
- Qingyun Lyu
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (X.W.); (Y.D.); (L.Z.); (L.C.); (X.W.); (W.D.)
- Key Laboratory of Grain and Oil Processing, Ministry of Education, Wuhan 430023, China
| | - Xing Wang
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (X.W.); (Y.D.); (L.Z.); (L.C.); (X.W.); (W.D.)
| | - Yunzhuo Dang
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (X.W.); (Y.D.); (L.Z.); (L.C.); (X.W.); (W.D.)
| | - Lijie Zhu
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (X.W.); (Y.D.); (L.Z.); (L.C.); (X.W.); (W.D.)
- Key Laboratory of Grain and Oil Processing, Ministry of Education, Wuhan 430023, China
| | - Lei Chen
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (X.W.); (Y.D.); (L.Z.); (L.C.); (X.W.); (W.D.)
- Key Laboratory of Grain and Oil Processing, Ministry of Education, Wuhan 430023, China
| | - Xuedong Wang
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (X.W.); (Y.D.); (L.Z.); (L.C.); (X.W.); (W.D.)
- Key Laboratory of Grain and Oil Processing, Ministry of Education, Wuhan 430023, China
| | - Wenping Ding
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (X.W.); (Y.D.); (L.Z.); (L.C.); (X.W.); (W.D.)
- Key Laboratory of Grain and Oil Processing, Ministry of Education, Wuhan 430023, China
| |
Collapse
|
4
|
Yang G, Jeong S, Lee S. Tomographical, rheological, and structural effects of soy protein concentrate in a gluten-free extruded noodle system. J Texture Stud 2023; 54:745-754. [PMID: 37160268 DOI: 10.1111/jtxs.12766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/29/2023] [Accepted: 04/23/2023] [Indexed: 05/11/2023]
Abstract
Global interest in high-protein foods has been rapidly increasing and the gluten-free products are no exceptions. Gluten-free extruded noodles made from rice flour were thus fortified with soy protein concentrate (SPC) (0%, 15%, 30%, and 45% by weight), and the physicochemical properties of the noodles were characterized in terms of tomographical, rheological, and structural features. SPC-rice flour blends showed higher water absorption and swelling power at room temperature with increasing levels of SPC, which were reduced upon heating. The flour blends with high-levels of SPC also had lower pasting viscosities. Thermal analysis showed lower enthalpy values and higher temperatures derived from starch gelatinization. When the SPC-rice flour blends were applied to extruded gluten-free rice noodles, the noodles tomographically showed a dense and compact structure, that could be favorably correlated with their textural changes (increased hardness and reduced extensibility). FTIR analysis presented the structural changes of the noodles containing different levels of SPC by showing higher intensity of protein-related absorption peaks and lower starch peak intensity, which could be associated with the reduced cooking loss. Moreover, there existed two water components with different mobilities in the noodles whose spin-spin relaxation times had a tendency to increase with increasing SPC content. The results obtained from this study provided fundamental insights into the processing performance of protein-rich ingredients in gluten-free extruded noodles, probably promoting the development of a wider variety of protein-fortified gluten-free products.
Collapse
Affiliation(s)
- Geunhyuk Yang
- Department of Food Science and Biotechnology, Sejong University, Seoul, South Korea
| | - Sungmin Jeong
- Carbohydrate Bioproduct Research Center, Sejong University, Seoul, South Korea
| | - Suyong Lee
- Department of Food Science and Biotechnology, Sejong University, Seoul, South Korea
- Carbohydrate Bioproduct Research Center, Sejong University, Seoul, South Korea
| |
Collapse
|
5
|
Axentii M, Stroe SG, Codină GG. Development and Quality Evaluation of Rigatoni Pasta Enriched with Hemp Seed Meal. Foods 2023; 12:foods12091774. [PMID: 37174312 PMCID: PMC10178187 DOI: 10.3390/foods12091774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/14/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Existing food trends and modern consumers' nutritional preferences have led to a rising demand for plant-based sources of protein such as hemp seed meal and the possibility of consumption hemp-rich products, most often in wheat-based staple foods, such as pasta. Pasta, as a conventional food product, is widely consumed worldwide due to its nutritional value, long shelf life, easy preparation, versatility of uses and also relatively low cost, which has made this product popular over time. Five formulations of rigatoni-shaped pasta obtained by partial replacement of wheat grain flour with 5%, 10%, 15% and 20% hemp seed meal (HSM) were studied regarding the technological, physicochemical, textural, antioxidant and sensory properties of the pasta samples. The substitution of wheat flour with hemp seed meal (HSM) led to a slight increase in the cooking loss (CL) and optimal cooking time (OCT) compared to the control sample, while the water absorption (WA) and swelling index (SI) decreased during evaluation. The experimental results also showed a decrease in luminosity and fracturability, with an increased firmness of pasta dough. Moreover, the developed pasta showed a significant improvement in antioxidant capacity in terms of total phenolic content (TPC) and antioxidant activity (DPPH). The pasta samples with 15% and 20% HSM substitutes experienced a browning process due to the Maillard reactions during drying, as well as a color loss during cooking; however, the color changes did not affect the acceptability of the product. The partial replacement of wheat flour with hemp seed protein highlighted the possibility of developing a new innovative type of pasta that claims a functional benefit and presents an improved nutritional value, mainly due to the partial protein intake, as well as certain benefits for a human diet.
Collapse
Affiliation(s)
- Marina Axentii
- Faculty of Food Engineering, Stefan cel Mare University of Suceava, 720229 Suceava, Romania
| | - Silviu-Gabriel Stroe
- Faculty of Food Engineering, Stefan cel Mare University of Suceava, 720229 Suceava, Romania
| | | |
Collapse
|
6
|
Sun Z, Lyu Q, Zhuang K, Chen L, Wang G, Wang Y, Chen X, Ding W. Impact of different preparation methods on the properties of brown rice flour and the cooking stability of brown rice noodles and the underlying mechanism: Microstructure, starch-protein distribution, moisture migration. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
7
|
Bangar SP, Ali NA, Olagunju AI, Pastor K, Ashogbon AO, Dash KK, Lorenzo JM, Ozogul F. Starch-based noodles: Current technologies, properties, and challenges. J Texture Stud 2023; 54:21-53. [PMID: 36268569 DOI: 10.1111/jtxs.12730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/02/2022] [Accepted: 10/11/2022] [Indexed: 11/29/2022]
Abstract
Starch noodles are gaining interest due to the massive popularity of gluten-free foods. Modified starch is generally used for noodle production due to the functional limitations of native starches. Raw materials, methods, key processing steps, additives, cooking, and textural properties determine the quality of starch noodles. The introduction of traditional, novel, and natural chemical additives used in starch noodles and their potential effects also impacts noodle quality. This review summarizes the current knowledge of the native and modified starch as raw materials and key processing steps for the production of starch noodles. Further, this article aimed to comprehensively collate some of the vital information published on the thermal, pasting, cooking, and textural properties of starch noodles. Technological, nutritional, and sensory challenges during the development of starch noodles are well discussed. Due to the increasing demands of consumers for safe food items with a long shelf life, the development of starch noodles and other convenience food products has increased. Also, the incorporation of modified starches overcomes the shortcomings of native starches, such as lack of viscosity and thickening power, retrogradation characteristics, or hydrophobicity. Starch can improve the stability of the dough structure but reduces the strength and resistance to deformation of the dough. Some technological, sensory, and nutritional challenges also impact the production process.
Collapse
Affiliation(s)
- Sneh Punia Bangar
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemenson, South Carolina, USA
| | - N Afzal Ali
- School of Agro and Rural Technology, Indian Institute of Technology Guwahati, Assam, India
| | | | - Kristian Pastor
- Faculty of Technology Novi Sad, University of Novi Sad, Novi Sad, Serbia
| | | | - Kshirod K Dash
- Department of Food Processing Technology, Ghani Khan Choudhury Institute of Engineering and Technology, Malda, West Bengal, India
| | - Jose M Lorenzo
- Centro Tecnológico de la Carne de Galicia, Ourense, Spain.,Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad deVigo, Ourense, Spain
| | - Fatih Ozogul
- Department of Seafood Processing Technology, Faculty of Fisheries, University of Cukurova, Adana, Turkey
| |
Collapse
|
8
|
Effect of Frozen Treatment on the Sensory and Functional Quality of Extruded Fresh Noodles Made from Whole Tartary Buckwheat. Foods 2022; 11:foods11243989. [PMID: 36553730 PMCID: PMC9778488 DOI: 10.3390/foods11243989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Extruded noodles made from whole Tartary buckwheat are widely known as healthy staple foods, while the treatment of fresh noodles after extrusion is crucial. The difference in sensory and functional quality between frozen noodles (FTBN) and hot air-dried noodles (DTBN) was investigated in this study. The results showed a shorter optimum cooking time (FTBN of 7 min vs. DTBN of 17 min), higher hardness (8656.99 g vs. 5502.98 g), and less cooking loss (5.85% vs. 21.88%) of noodles treated by freezing rather than hot air drying, which corresponded to better sensory quality (an overall acceptance of 7.90 points vs. 5.20 points). These effects on FTBN were attributed to its higher ratio of bound water than DTBN based on the Low-Field Nuclear Magnetic Resonance results and more pores of internal structure in noodles based on the Scanning Electron Microscopy results. The uniform water distribution in FTBN promoted a higher recrystallization (relative crystallinity of FTBN 26.47% vs. DTBN 16.48%) and retrogradation (degree of retrogradation of FTBN 34.67% vs. DTBN 26.98%) of starch than DTBN, strengthening the stability of starch gel after noodle extrusion. FTBN also avoided the loss of flavonoids and retained better antioxidant capacity than DTBN. Therefore, frozen treatment is feasible to maintain the same quality as freshly extruded noodles made from whole Tartary buckwheat. It displays significant commercial potential for gluten-free noodle production to maximize the health benefit of the whole grain, as well as economic benefits since it also meets the sensory quality requirements of consumers.
Collapse
|
9
|
Yi C, Xu L, Luo C, He H, Ai X, Zhu H. In vitro digestion, fecal fermentation, and gut bacteria regulation of brown rice gel prepared from rice slurry backfilled with rice bran. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
10
|
Zheng Y, Jiang L, Zhang CZ, Huang GQ, Guo LP, Xiao JX. Addition of Chelators Increased the Stability of Black Rice Anthocyanins against the Metallic Ions in Tap Water and Improved the Coloration of Steamed Cold Noodles. Foods 2022; 11:3392. [PMID: 36360005 PMCID: PMC9658455 DOI: 10.3390/foods11213392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/20/2022] [Accepted: 10/25/2022] [Indexed: 09/08/2024] Open
Abstract
The anthocyanins in black rice extract (BRA) are sensitive to metallic ions, which restrict its application in the coloration of steamed cold noodles in China that uses tap water as the solvent. Food-grade chelators were added to check if they could increase the stability of BRA. The results indicated that the color decay of BRA in tap water was mainly caused by Fe3+, Cu2+, and Fe2+, and the addition of chelators could effectively antagonize this effect. Coloration with the BRA solution containing the optimized chelator formulation of 0.01% ethylenediaminetetraacetic acid disodium, 0.08% sodium hexametaphosphate, and 0.064% sodium tartrate conferred comparable appearance and chromatic attributes with those of the noodle colored by deionized water-dissolved BRA. The steamed cold noodles colored by the chelators-containing BRA exhibited increased springiness and decreased starch retrogradation, and possessed potential health functions due to its slightly increased resistant starch content and markedly enhanced antioxidant capacity. Hence, the addition of chelators is a feasible way to increase the color stability of BRA in tap water, and the chelators-supplemented BRA could be used to produce steamed cold noodles with attractive color and health benefits.
Collapse
Affiliation(s)
- Yi Zheng
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Ling Jiang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Chun-Zhi Zhang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Guo-Qing Huang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Li-Ping Guo
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Jun-Xia Xiao
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
- Special Food Research Institute, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
11
|
Lin Q, Ren A, Liu R, Xing Y, Yu X, Jiang H. Flavor properties of Chinese noodles processed by dielectric drying. Front Nutr 2022; 9:1007997. [PMID: 36245479 PMCID: PMC9558107 DOI: 10.3389/fnut.2022.1007997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/15/2022] [Indexed: 11/13/2022] Open
Abstract
Volatile organic compounds (VOCs) significantly impact food flavor. In this work, Electron nose (E-nose), head space solid phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS), and head space-gas chromatography-ion mobility spectrometry (HS-GC-IMS) techniques were applied to analyze different drying effects: microwave, hot air, and radio frequency on the aroma of Chinese noodles. E-nose analysis suggests that aromatic differences are mainly from broad range-methane. HS-SPME-GC-MS and HS-GC-IMS identified 47 and 26 VOCs in the fresh and dried noodles, respectively. The VOCs in the dried noodles were mainly aldehydes, alcohols, and esters. Drying significantly reduced the types of VOCs in Chinese dried noodles. Microwave dried noodles exhibited the strongest aroma after the shortest time of treatment, suggesting microwave drying may be the best drying method for noodles. Using aromatic analysis, this paper provides useful information for understanding the flavor of flour products and offers new ideas for drying noodles.
Collapse
Affiliation(s)
- Qian Lin
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Aiqing Ren
- Institute of Food Research, Hezhou University, Guangxi, China
| | - Rui Liu
- Cereal Industrial Technology Academy, Hebei Jinshahe Flour and Noodle Group/Hebei Cereal Food Processing Technology Innovation Centre, Xingtai, China
| | - Yanan Xing
- Cereal Industrial Technology Academy, Hebei Jinshahe Flour and Noodle Group/Hebei Cereal Food Processing Technology Innovation Centre, Xingtai, China
| | - Xiuzhu Yu
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Hao Jiang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
- Engineering Research Center of Grain and Oil Functionalized Processing, Universities of Shaanxi Province, Yangling, China
- *Correspondence: Hao Jiang, ;
| |
Collapse
|
12
|
Guan C, Long X, Long Z, Lin Q, Liu C. Legumes flour: A review of the nutritional properties, physiological functions, and application in extruded rice products. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.16005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Chunmin Guan
- National Engineering Research Center for Rice and By‐product Deep Processing, School of Food Science and Engineering Central South University of Forestry and Technology Changsha 410004 China
| | - Xinkang Long
- National Engineering Research Center for Rice and By‐product Deep Processing, School of Food Science and Engineering Central South University of Forestry and Technology Changsha 410004 China
| | - Zhao Long
- National Engineering Research Center for Rice and By‐product Deep Processing, School of Food Science and Engineering Central South University of Forestry and Technology Changsha 410004 China
| | - Qinlu Lin
- National Engineering Research Center for Rice and By‐product Deep Processing, School of Food Science and Engineering Central South University of Forestry and Technology Changsha 410004 China
| | - Chun Liu
- National Engineering Research Center for Rice and By‐product Deep Processing, School of Food Science and Engineering Central South University of Forestry and Technology Changsha 410004 China
| |
Collapse
|
13
|
Yi C, Xie L, Cao Z, Quan K, Zhu H, Yuan J. Effects of rice bran fermented with
Lactobacillus plantarum
on palatability, volatile profiles, and antioxidant activity of brown rice noodles. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Cuiping Yi
- School of Food Science and Bioengineering Changsha University of Science and Technology Changsha 410114 China
| | - Lan Xie
- School of Food Science and Bioengineering Changsha University of Science and Technology Changsha 410114 China
| | - Zhongfu Cao
- School of Food Science and Bioengineering Changsha University of Science and Technology Changsha 410114 China
| | - Ke Quan
- School of Food Science and Bioengineering Changsha University of Science and Technology Changsha 410114 China
| | - Hong Zhu
- School of Food Science and Bioengineering Changsha University of Science and Technology Changsha 410114 China
| | - Jieyao Yuan
- School of Food Science and Bioengineering Changsha University of Science and Technology Changsha 410114 China
| |
Collapse
|
14
|
Development of Gluten-Free Rice Flour Noodles That Suit the Tastes of Japanese People. Foods 2022; 11:foods11091321. [PMID: 35564043 PMCID: PMC9103700 DOI: 10.3390/foods11091321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/26/2022] [Accepted: 04/29/2022] [Indexed: 11/29/2022] Open
Abstract
Gluten-free rice flour noodles with a flavor and texture profile preferred by the Japanese people were developed. The rice noodles contained potato starch (PS) as a binder. “Koshihikari” was selected from several candidate varieties based on its pasting properties. Since the Japanese people prefer the chewy texture of wheat flour “Udon” noodles, first, the stress−strain characteristics of “Udon” noodles in Japan were quantified, using a mechanical test. Next, different formulations of rice noodles were prepared by changing the amount of PS blended into the noodles. The mechanical tests on wheat and rice noodles show that rice noodles made from 85% rice flour and 15% PS have a texture similar to that of “Udon” noodles. Brown rice noodles containing roasted brown rice flour were also developed. Since brown rice flour hinders the binding of the dough, it was necessary to increase the amount of PS to increase the binding of roasted brown rice flour. Finally, noodles with 70% white rice flour, 10% brown rice flour, and 20% PS were produced. The gas chromatography−mass spectrometry analysis of the volatile compounds contained in white rice noodles and brown rice noodles identified the volatile compounds characteristic each of type.
Collapse
|
15
|
Effect of Ginkgo Biloba Powder on the Physicochemical Properties and Quality Characteristics of Wheat Dough and Fresh Wet Noodles. Foods 2022; 11:foods11050698. [PMID: 35267331 PMCID: PMC8909626 DOI: 10.3390/foods11050698] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/10/2022] [Accepted: 02/24/2022] [Indexed: 02/04/2023] Open
Abstract
Effects of ginkgo biloba powder (GBP) on the chemical, physicochemical properties and quality of dough and fresh wet noodles were investigated. Lower contents of gluten and starch, and higher contents of fibre, amylose and flavonoids in GBP than wheat flour, were detected. Water absorption of dough increased and the development time and stability time of dough were decreased with GBP addition. Meanwhile, the pasting properties results showed that the addition of GBP reduced the aging degree of starch and improved the thermal stability of dough. Scanning electron microscopy results showed that addition of GBP smoothed the surface of raw noodles while increasing the hole size of the cooked noodles. With increased GBP addition (0~40%), the chewiness and extensibility of the fresh wet noodles increased significantly (p < 0.05), and the sensory scores changed, ascending from 0~20% substitution, and then descending from 20~40% substitution. The digestibility and estimated glycemic index (eGI) values of the GBP fresh wet noodles decreased significantly (p < 0.05). In general, 20% GBP addition could improve the chewiness, extensibility, taste and nutrition of fresh wet noodles, and decrease the digestibility and eGI values of noodles. Thus, GBP has potential for application in the noodle industry.
Collapse
|
16
|
Analyzing the Effect of Baking on the Flavor of Defatted Tiger Nut Flour by E-Tongue, E-Nose and HS-SPME-GC-MS. Foods 2022; 11:foods11030446. [PMID: 35159596 PMCID: PMC8834115 DOI: 10.3390/foods11030446] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/20/2022] [Accepted: 01/30/2022] [Indexed: 12/04/2022] Open
Abstract
In order to screen for a proper baking condition to improve flavor, in this experiment, we analyzed the effect of baking on the flavor of defatted tiger nut flour by electronic tongue (E-tongue), electronic nose (E-nose) and headspace solid-phase microextraction gas chromatography-mass spectrometry (HS-SPME-GC-MS). According to E-tongue and E-nose radar plots and principal component analysis (PCA), baking can effectively change the taste and odor of defatted tiger nut flour, and the odors of samples with a baking time of >8 min were significantly different from the original odor of unbaked flour. Moreover, bitterness and astringency increased with longer baking times, and sweetness decreased. HS-SPME-GC-MS detected a total of 68 volatile organic compounds (VOCs) in defatted tiger nut flour at different baking levels, and most VOCs were detected at 8 min of baking. Combined with the relative odor activity value (ROAV) and heat map analysis, the types and contents of key flavor compounds were determined to be most abundant at 8 min of baking; 3-methyl butyraldehyde (fruity and sweet), valeraldehyde (almond), hexanal (grassy and fatty), and 1-dodecanol, were the key flavor compounds. 2,5-dimethyl pyrazine, and pyrazine, 2-ethylalkyl-3,5-dimethyl- added nutty aromas, and 1-nonanal, 2-heptanone, octanoic acid, bicyclo [3.1.1]hept-3-en-2-ol,4,6,6-trimethyl-, and 2-pentylfuran added special floral and fruity aromas.
Collapse
|
17
|
Jeong SY, Kim E, Zhang M, Lee YS, Ji B, Lee SH, Cheong YE, Yun SI, Kim YS, Kim KH, Kim MS, Chun HS, Kim S. Antidiabetic Effect of Noodles Containing Fermented Lettuce Extracts. Metabolites 2021; 11:520. [PMID: 34436461 PMCID: PMC8401091 DOI: 10.3390/metabo11080520] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 01/29/2023] Open
Abstract
The aim of the current study was to examine the antidiabetic effect of noodle containing fermented lettuce extract (FLE) on diabetic mice as a pre-clinical study. The γ-aminobutyric acid (GABA) content, antioxidant capacity, and total polyphenol content of the FLE noodles were analyzed and compared with those of standard noodles. In addition, oral glucose and sucrose tolerance, and fasting blood glucose tests were performed using a high-fat diet/streptozotocin-mediated diabetic mouse model. Serum metabolite profiling of mice feed standard or FLE noodles was performed using gas chromatography-time-of-flight mass spectrometry (GC-TOF-MS) to understand the mechanism changes induced by the FLE noodles. The GABA content, total polyphenols, and antioxidant activity were high in FLE noodles compared with those in the standard noodles. In vivo experiments also showed that mice fed FLE noodles had lower blood glucose levels and insulin resistance than those fed standard noodles. Moreover, glycolysis, purine metabolism, and amino acid metabolism were altered by FLE as determined by GC-TOF-MS-based metabolomics. These results demonstrate that FLE noodles possess significant antidiabetic activity, suggesting the applicability of fermented lettuce extract as a potential food additive for diabetic food products.
Collapse
Affiliation(s)
- Soon Yeon Jeong
- Department of Food Science and Technology, Jeonbuk National University, Jeonju 54896, Korea; (S.Y.J.); (E.K.); (S.-I.Y.); (Y.-S.K.)
| | - Eunjin Kim
- Department of Food Science and Technology, Jeonbuk National University, Jeonju 54896, Korea; (S.Y.J.); (E.K.); (S.-I.Y.); (Y.-S.K.)
| | - Ming Zhang
- Department of Environment Science & Biotechnology, Jeonju University, Jeonju 55069, Korea;
| | - Yun-Seong Lee
- HumanEnos LLC, Wanju 55347, Korea; (Y.-S.L.); (B.J.)
| | - Byeongjun Ji
- HumanEnos LLC, Wanju 55347, Korea; (Y.-S.L.); (B.J.)
| | - Sun-Hee Lee
- Department of Biotechnology, Graduate School, Korea University, Seoul 02841, Korea; (S.-H.L.); (Y.E.C.); (K.H.K.)
| | - Yu Eun Cheong
- Department of Biotechnology, Graduate School, Korea University, Seoul 02841, Korea; (S.-H.L.); (Y.E.C.); (K.H.K.)
| | - Soon-Il Yun
- Department of Food Science and Technology, Jeonbuk National University, Jeonju 54896, Korea; (S.Y.J.); (E.K.); (S.-I.Y.); (Y.-S.K.)
| | - Young-Soo Kim
- Department of Food Science and Technology, Jeonbuk National University, Jeonju 54896, Korea; (S.Y.J.); (E.K.); (S.-I.Y.); (Y.-S.K.)
| | - Kyoung Heon Kim
- Department of Biotechnology, Graduate School, Korea University, Seoul 02841, Korea; (S.-H.L.); (Y.E.C.); (K.H.K.)
| | - Min Sun Kim
- Center for Nitric Oxide Metabolite, Department of Physiology, Wonkwang University, Iksan 54538, Korea;
| | - Hyun Soo Chun
- HumanEnos LLC, Wanju 55347, Korea; (Y.-S.L.); (B.J.)
| | - Sooah Kim
- Department of Environment Science & Biotechnology, Jeonju University, Jeonju 55069, Korea;
| |
Collapse
|