1
|
Borja M, Dhondt J, Bertels J, Van Hauwermeiren D, Verwaeren J. Modelling the effect of base component properties and processing conditions on mixture products using probabilistic, knowledge-guided neural networks. Int J Pharm 2025; 669:125012. [PMID: 39643149 DOI: 10.1016/j.ijpharm.2024.125012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 12/09/2024]
Abstract
Development of materials by mixing different base components is a widespread methodology to create materials with improved properties compared to those of its base components. However, efficient determination of the properties of mixture-based materials during design remains challenging without prior knowledge of the underlying physical phenomena. In this work a new data-based methodology is proposed involving the use of probabilistic, knowledge-guided artificial neural networks to jointly model the properties of the base components, the proportions in which they are mixed, and the processing conditions used during manufacture to predict properties of final products. The method proposed does not involve any assumptions in terms of ideal mixing rules of the base components, and allows for estimation of aleatoric uncertainty in the prediction. Additionally, an extension is presented that incorporates expert knowledge into the model by the implementation of monotonicity constraints between certain inputs and outputs. The methodology is illustrated with a case study involving the formulation of drug products using direct compression. The model is used to predict pharmaceutical tablets' quality attributes (mass variation, tensile strength, disintegration time, friability and ejection force), showing that the method is able to predict properties of the final product overcoming gaps currently present in previous modelling approaches.
Collapse
Affiliation(s)
- Manuel Borja
- Department of Data Analysis and Mathematical Modelling, Ghent University, Coupure links 653, Gent, 9000, Belgium.
| | - Jens Dhondt
- Oral Solids Development, Pharmaceutical Product Development & Supply, Pharmaceutical Research and Development, Division of Janssen Pharmaceutica, Johnson & Johnson, Turnhoutseweg 30, Beerse, B-2340, Belgium
| | - Johny Bertels
- Oral Solids Development, Pharmaceutical Product Development & Supply, Pharmaceutical Research and Development, Division of Janssen Pharmaceutica, Johnson & Johnson, Turnhoutseweg 30, Beerse, B-2340, Belgium
| | - Daan Van Hauwermeiren
- Department of Data Analysis and Mathematical Modelling, Ghent University, Coupure links 653, Gent, 9000, Belgium
| | - Jan Verwaeren
- Department of Data Analysis and Mathematical Modelling, Ghent University, Coupure links 653, Gent, 9000, Belgium
| |
Collapse
|
2
|
Zhang S, Chen B, Liu Y, Sun H, Zhang H, Li N, Qing Y, Elango J, Zhao D, Wu W. Ultrasound-Assisted Determination of Selenium in Organic Rice Using Deep Eutectic Solvents Coupled with Inductively Coupled Plasma Mass Spectrometry. Foods 2025; 14:384. [PMID: 39941978 PMCID: PMC11816988 DOI: 10.3390/foods14030384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 12/26/2024] [Accepted: 01/17/2025] [Indexed: 02/16/2025] Open
Abstract
As the focus on green chemistry intensifies, researchers are progressively looking to incorporate biodegradable and environmentally friendly solvents. Given the prevalent use of inorganic solvents in conventional methods for detecting selenium content, this study utilized a mixture design approach to create four deep eutectic solvents (DESs). The elements of the DESs consisted of six different compounds: guanidine hydrochloride, fructose, glycerol, citric acid, proline, and choline chloride. The synthesized deep eutectic solvents (DESs) exhibited a uniform and transparent appearance. The ideal ratios for each DES were established based on their density and viscosity measurements, leading to the formulations of DES1 (34% guanidine hydrochloride, 21% fructose, 45% water), DES2 (23% guanidine hydrochloride, 32% glycerol, 45% water), DES3 (27.5% citric acid, 27.5% proline, 45% water), and DES4 (30% choline chloride, 25% citric acid, 45% water). The characterization of the deep eutectic solvents (DESs) was performed using nuclear magnetic resonance (NMR) spectroscopy and infrared (IR) spectroscopy, which confirmed the molecular formation of each DES. Following this, the DESs were applied as extraction solvents in a process involving ultrasonic-assisted microextraction (UAE) combined with inductively coupled plasma mass spectrometry (ICP-MS) to assess the selenium levels in selenium-rich rice. The results were benchmarked against traditional microwave-assisted acid digestion (TM-AD), revealing selenium recovery rates ranging from 85.5% to 106.7%. These results indicate that UAE is an effective method for extracting selenium from selenium-rich rice, thereby establishing a solid data foundation for the environmentally friendly analysis of selenium content in rice.
Collapse
Affiliation(s)
- Shanshan Zhang
- Department of Marine Biopharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (S.Z.); (B.C.); (Y.L.); (H.S.); (H.Z.); (N.L.); (J.E.)
| | - Boyu Chen
- Department of Marine Biopharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (S.Z.); (B.C.); (Y.L.); (H.S.); (H.Z.); (N.L.); (J.E.)
| | - Yu Liu
- Department of Marine Biopharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (S.Z.); (B.C.); (Y.L.); (H.S.); (H.Z.); (N.L.); (J.E.)
| | - Haoyu Sun
- Department of Marine Biopharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (S.Z.); (B.C.); (Y.L.); (H.S.); (H.Z.); (N.L.); (J.E.)
| | - Haixing Zhang
- Department of Marine Biopharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (S.Z.); (B.C.); (Y.L.); (H.S.); (H.Z.); (N.L.); (J.E.)
| | - Na Li
- Department of Marine Biopharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (S.Z.); (B.C.); (Y.L.); (H.S.); (H.Z.); (N.L.); (J.E.)
| | - Yang Qing
- Shanghai Knowhub Technology Co., Ltd. (Ouryao), 201-202, Block 4, Best Town, 388 Shengrong Road, Pudong New Area, Shanghai 201210, China;
| | - Jeevithan Elango
- Department of Marine Biopharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (S.Z.); (B.C.); (Y.L.); (H.S.); (H.Z.); (N.L.); (J.E.)
- Department of Biomaterials Engineering, Faculty of Health Sciences, UCAM—Universidad Católica San Antonio de Murcia, Guadalupe, 30107 Murcia, Spain
| | - Dayun Zhao
- Bor S.Luh Food Safety Research Center, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Wenhui Wu
- Department of Marine Biopharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (S.Z.); (B.C.); (Y.L.); (H.S.); (H.Z.); (N.L.); (J.E.)
- Marine Biomedical Science and Technology Innovation Platform of Lin-Gang Special Area, Shanghai 201306, China
| |
Collapse
|
3
|
Hadj Saadoun J, Del Vecchio L, Bettera L, Fontechiari L, Martelli F, Ricci A, Levante A, Bancalari E, Cirlini M, Lazzi C. Design of experiment approach to boost volatile production from kiwi byproducts. BIORESOURCE TECHNOLOGY 2024; 413:131505. [PMID: 39299348 DOI: 10.1016/j.biortech.2024.131505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
Design of Experiments (DoE), is a tool to explore relationships between factors and responses of a system. DoE and response surface methodology are increasingly used in different fields, but their application are limited in the valorization of residual biomass and agro-industrial by-products. Agro-industrial biomass residues can be eco-friendly converted into high-value compounds through bioprocesses. This approach identified key factors and predicted optimal conditions for enhancing microbial growth and the production of specific compounds or volatile classes. Lactiplantibacillus plantarum 4193 and Lacticaseibacillus paracasei 2243, were identified as the best starters while the production of methyl heptenone is influenced by fermentation time and pH. This out-turn in the generation of aromatically rich biomass, which can be utilised as a food ingredient or for the extraction of specific volatile compounds, and employed as flavouring agents. This study underlines the potential of fermentation in maximizing the value of unripe kiwi biomass.
Collapse
Affiliation(s)
| | | | - Luca Bettera
- Department of Food and Drug, University of Parma, Parma 43124, Italy.
| | - Luca Fontechiari
- Department of Food and Drug, University of Parma, Parma 43124, Italy.
| | | | - Annalisa Ricci
- Department of Food and Drug, University of Parma, Parma 43124, Italy.
| | - Alessia Levante
- Department of Food and Drug, University of Parma, Parma 43124, Italy.
| | - Elena Bancalari
- Department of Food and Drug, University of Parma, Parma 43124, Italy.
| | - Martina Cirlini
- Department of Food and Drug, University of Parma, Parma 43124, Italy.
| | - Camilla Lazzi
- Department of Food and Drug, University of Parma, Parma 43124, Italy.
| |
Collapse
|
4
|
Carboni AD, Puppo MC, Ferrero C. Gluten-free lentil cakes with optimal technological and nutritional characteristics. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:6298-6310. [PMID: 38501745 DOI: 10.1002/jsfa.13459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 03/01/2024] [Accepted: 03/19/2024] [Indexed: 03/20/2024]
Abstract
BACKGROUND The celiac population usually struggle finding nutritive gluten-free (GF) baked goods. GF foods can be improved using legume flours. Eleven GF cake formulations were elaborated according to different percentages of lentil flour (LF), corn flour (CF) and rice flour (RF) using a simplex lattice design. Water holding capacity and particle size of flours were evaluated. Moisture, aw, pH, specific volume, texture profile, relaxation, color and alveolar characteristics were determined for crumbs of all formulations. An optimization process was used to enhance the technological and nutritional attributes, selecting the three best formulations containing LF: 46% LF + 54% RF (CLF+RF); 49% LF + 51% CF (CLF+CF); and 100% LF (CLF), evaluated in their proximal composition and sensory characteristics. Linear and quadratic models for predicting the behavior of GF lentil cakes were obtained. RESULTS LF and CF could favor water incorporation and show more resistance to enzymatic digestion than RF. Formulations with LF showed an improvement in specific volume and alveolar parameters, while use of RF led to better cohesiveness, elasticity and resilience but with a deterioration in chewiness and firmness. CLF can be labeled as high in protein and fiber and presented the lowest amounts of lipids, carbohydrates and energy content. Consumer preference leaned towards CLF+RF. CONCLUSION It was possible to elaborate GF cakes using LF, obtaining nutritive products that can be offered to people intolerant to gluten ingestion. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Angela D Carboni
- CIDCA - Facultad de Ciencias Exactas (UNLP - CONICET), La Plata, Argentina
| | - María C Puppo
- CIDCA - Facultad de Ciencias Exactas (UNLP - CONICET), La Plata, Argentina
- Facultad de Ciencias Agrarias y Forestales (FCAyF - UNLP), La Plata, Argentina
| | - Cristina Ferrero
- CIDCA - Facultad de Ciencias Exactas (UNLP - CONICET), La Plata, Argentina
| |
Collapse
|
5
|
Dáger-López D, Chenché Ó, Ricaurte-Párraga R, Núñez-Rodríguez P, Bajaña JM, Fiallos-Cárdenas M. Advances in the Production of Sustainable Bacterial Nanocellulose from Banana Leaves. Polymers (Basel) 2024; 16:1157. [PMID: 38675076 PMCID: PMC11054657 DOI: 10.3390/polym16081157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/16/2024] [Accepted: 03/18/2024] [Indexed: 04/28/2024] Open
Abstract
Interest in bacterial nanocellulose (BNC) has grown due to its purity, mechanical properties, and biological compatibility. To address the need for alternative carbon sources in the industrial production of BNC, this study focuses on banana leaves, discarded during harvesting, as a valuable source. Banana midrib juice, rich in nutrients and reducing sugars, is identified as a potential carbon source. An optimal culture medium was designed using a simplex-centroid mixing design and evaluated in a 10 L bioreactor. Techniques such as Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), X-ray diffraction (XRD), and thermogravimetric analysis (TGA) were used to characterize the structural, thermal, and morphological properties of BNC. Banana midrib juice exhibited specific properties, such as pH (5.64), reducing sugars (15.97 g/L), Trolox (45.07 µM), °Brix (4.00), and antioxidant activity (71% DPPH). The model achieved a 99.97% R-adjusted yield of 6.82 g BNC/L. Physicochemical analyses revealed distinctive attributes associated with BNC. This approach optimizes BNC production and emphasizes the banana midrib as a circular solution for BNC production, promoting sustainability in banana farming and contributing to the sustainable development goals.
Collapse
Affiliation(s)
- David Dáger-López
- Facultad de Ciencias e Ingeniería, Universidad Estatal de Milagro, Milagro 091050, Ecuador; (D.D.-L.); (Ó.C.); (R.R.-P.)
| | - Óscar Chenché
- Facultad de Ciencias e Ingeniería, Universidad Estatal de Milagro, Milagro 091050, Ecuador; (D.D.-L.); (Ó.C.); (R.R.-P.)
| | - Rayner Ricaurte-Párraga
- Facultad de Ciencias e Ingeniería, Universidad Estatal de Milagro, Milagro 091050, Ecuador; (D.D.-L.); (Ó.C.); (R.R.-P.)
| | - Pablo Núñez-Rodríguez
- Facultad de Ciencias Agrarias, Campus Milagro, Universidad Agraria del Ecuador, Milagro 091050, Ecuador; (P.N.-R.); (J.M.B.)
| | - Joaquin Morán Bajaña
- Facultad de Ciencias Agrarias, Campus Milagro, Universidad Agraria del Ecuador, Milagro 091050, Ecuador; (P.N.-R.); (J.M.B.)
| | - Manuel Fiallos-Cárdenas
- Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ingeniería en Mecánica y Ciencias de la Producción, Campus Gustavo Galindo, Km. 30.5 Vía Perimetral, P.O. Box 09-01-5863, Guayaquil 090902, Ecuador
| |
Collapse
|
6
|
Al-Mijalli SH, Jeddi M, El Hachlafi N, M. Abdallah E, Assaggaf H, Qasem A, S. Rajab B, Lee LH, Bouyahya A, Goh KW, Ming LC, Mrabti HN. Combination of sweet orange, lentisk and lemon eucalyptus essential oils: Optimization of a new complete antimicrobial formulation using a mixture design methodology. Heliyon 2023; 9:e19814. [PMID: 37809691 PMCID: PMC10559161 DOI: 10.1016/j.heliyon.2023.e19814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/01/2023] [Accepted: 09/01/2023] [Indexed: 10/10/2023] Open
Abstract
Sweet orange (Citrus × sinensis (L.) Osbeck), lentisk (Pistacia lentiscus L.) and lemon eucalyptus (Eucalyptus citriodora Hook) are medicinal plants known by its culinary virtues. Their volatile oils have demonstrated promising antimicrobial activity against a panel of microbial strains, including those implicated in food deterioration. In this exploratory investigation, we aimed to determine the antimicrobial formulation of sweet orange, lentisk and lemon eucalyptus essential oils (EOs) using the simplex-centroid mixture design approach coupled with a broth microdilution method. EOs were first extracted by hydrodistillation, and then their phytochemical profile was characterized using Gas chromatography-mass spectrometry (GC-MS). GC-MS analysis identified d-limonene (14.27%), careen-3 (14.11%), β-myrcene (12.53%) as main components of lentisk EOs, while lemon eucalyptus was dominated by citronellal (39.40%), β-citronellol (16.39%) and 1,8-cineole (9.22%). For sweet orange EOs, d-limonene (87.22%) was the principal compound. The three EOs exhibited promising antimicrobial potential against various microorganisms. Lemon eucalyptus and sweet orange EO showed high activity against most tested microorganisms, while lentisk EO exerted important effect against some microbes but only moderate activity against others. The optimization formulations of antimicrobial potential showed interesting synergistic effects between three EOs. The best combinations predicted on C. albicans, S. aureus, E. coli, S. enterica and B. cereus correspond to 44%/55%/0%, 54%/16%/28%, 43%/22%/33%, 45%/17%/36% and 36%/30%/32% of Citrus sinensis, Pistacia lentiscus and Eucalyptus citriodora EOs, respectively. These findings suggest that the combination of EOs could be used as natural food preservatives and antimicrobial agents. However, further studies are needed to determine the mechanisms of action and efficacy of these EOs against different microorganisms.
Collapse
Affiliation(s)
- Samiah Hamad Al-Mijalli
- Department of Biology, College of Sciences, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Mohamed Jeddi
- Laboratory of Microbial Biotechnology and Bioactive Molecules, Faculty of Sciences and Technologies Faculty, Sidi Mohamed Ben Abdellah University, P.O. Box 2202, Imouzzer Road, Fez, Morocco
| | - Naoufal El Hachlafi
- Laboratory of Microbial Biotechnology and Bioactive Molecules, Faculty of Sciences and Technologies Faculty, Sidi Mohamed Ben Abdellah University, P.O. Box 2202, Imouzzer Road, Fez, Morocco
| | - Emad M. Abdallah
- Department of Science Laboratories, College of Science and Arts, Qassim University, Ar Rass 51921, Saudi Arabia
| | - Hamza Assaggaf
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Ahmed Qasem
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Bodour S. Rajab
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Learn-Han Lee
- Sunway Microbiomics Centre, School of Medical and Life Sciences, Sunway University, Sunway City 47500, Malaysia
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Sunway City, Malaysia
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, 10106, Morocco
| | - Khang Wen Goh
- Faculty of Data Science and Information Technology, INTI International University, 71800 Nilai, Malaysia
| | - Long Chiau Ming
- School of Medical and Life Sciences, Sunway University, Sunway City 47500, Malaysia
| | - Hanae Naceiri Mrabti
- Laboratory of Pharmacology and Toxicology, Bio Pharmaceutical and Toxicological Analysis Research Team, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco
- High Institute of Nursing Professions and Health Techniques of Casablanca, Casablanca, Morocco
| |
Collapse
|
7
|
Squeo G, Latrofa V, Vurro F, De Angelis D, Caponio F, Summo C, Pasqualone A. Developing a Clean Labelled Snack Bar Rich in Protein and Fibre with Dry-Fractionated Defatted Durum Wheat Cake. Foods 2023; 12:2547. [PMID: 37444284 DOI: 10.3390/foods12132547] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
The shift towards a vegetarian, vegan, or flexitarian diet has increased the demand for vegetable protein and plant-based foods. The defatted cake generated during the extraction of lipids from durum wheat (Triticum turgidum L. var. durum) milling by-products is a protein and fibre-containing waste, which could be upcycled as a food ingredient. This study aimed to exploit the dry-fractionated fine fraction of defatted durum wheat cake (DFFF) to formulate a vegan, clean labelled, cereal-based snack bar. The design of experiments (DoEs) for mixtures was applied to formulate a final product with optimal textural and sensorial properties, which contained 10% DFFF, 30% glucose syrup, and a 60% mix of puffed/rolled cereals. The DFFF-enriched snack bar was harder compared to the control without DFFF (cutting stress = 1.2 and 0.52 N/mm2, and fracture stress = 12.9 and 9.8 N/mm2 in the DFFF-enriched and control snack bar, respectively), due to a densifying effect of DFFF, and showed a more intense yellow hue due to the yellow-brownish colour of DFFF. Another difference was in the caramel flavour, which was more intense in the DFFF-enriched snack bar. The nutritional claims "low fat" and "source of fibre" were applicable to the DFFF-enriched snack bar according to EC Reg. 1924/06.
Collapse
Affiliation(s)
- Giacomo Squeo
- Department of Soil, Plant and Food Science (DISSPA), University of Bari Aldo Moro, Via Amendola, 165/a, I-70126 Bari, Italy
| | - Vittoria Latrofa
- Department of Soil, Plant and Food Science (DISSPA), University of Bari Aldo Moro, Via Amendola, 165/a, I-70126 Bari, Italy
| | - Francesca Vurro
- Department of Soil, Plant and Food Science (DISSPA), University of Bari Aldo Moro, Via Amendola, 165/a, I-70126 Bari, Italy
| | - Davide De Angelis
- Department of Soil, Plant and Food Science (DISSPA), University of Bari Aldo Moro, Via Amendola, 165/a, I-70126 Bari, Italy
| | - Francesco Caponio
- Department of Soil, Plant and Food Science (DISSPA), University of Bari Aldo Moro, Via Amendola, 165/a, I-70126 Bari, Italy
| | - Carmine Summo
- Department of Soil, Plant and Food Science (DISSPA), University of Bari Aldo Moro, Via Amendola, 165/a, I-70126 Bari, Italy
| | - Antonella Pasqualone
- Department of Soil, Plant and Food Science (DISSPA), University of Bari Aldo Moro, Via Amendola, 165/a, I-70126 Bari, Italy
| |
Collapse
|
8
|
Galante N, Palavecino Prpich N, Campos C, Cayré ME, Castro M. Alternative culture medium design for biomass production of autochthonous meat starter Latilactobacillus sakei sp. sakei ACU-2. Sci Rep 2023; 13:5205. [PMID: 36997546 PMCID: PMC10063532 DOI: 10.1038/s41598-023-29502-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/06/2023] [Indexed: 04/03/2023] Open
Abstract
The autochthonous strain Latilactobacillus sakei sp. sakei ACU-2 was selected as a meat starter culture for dry sausage production. Transferring this strain from laboratory scale to industry requires an increase in biomass production, while lowering process costs. In this study, a combination of techniques was applied in order to optimize the culture medium composition to enhance biomass production of L. sakei ACU-2. One variable at a time experiments, Plackett-Burman design, and mixture design were performed to fulfill the strain nutritional requirements. Eventually, the optimized formulation contained 19.46 g/L yeast extract; 8.28 g/L whey protein concentrate; 2.26 g/L soy peptone; 30 g/L cerelose; 1 g/L Tween 80; 5 g/L sodium acetate; 0.2 g/L magnesium sulfate and 0.05 g/L manganese sulfate. When L. sakei ACU-2 was cultivated in a bioreactor using the alternative medium, an enhancement of 75.5% of biomass production was achieved, in comparison to its growth in the commercial de Man, Rogosa, and Sharpe medium. Furthermore, a reduction of 62-86% of the cost was also attained. These results support a promising large-scale application of the designed medium for high biomass yields of the starter culture at minor costs.
Collapse
Affiliation(s)
- Nadia Galante
- Laboratorio de Microbiología de Alimentos, Instituto de Investigaciones en Procesos Tecnológicos Avanzados (INIPTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional del Chaco Austral (UNCAus), Comandante Fernández 755, (3700), Sáenz Peña, Chaco, Argentina
| | - Noelia Palavecino Prpich
- Laboratorio de Microbiología de Alimentos, Instituto de Investigaciones en Procesos Tecnológicos Avanzados (INIPTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional del Chaco Austral (UNCAus), Comandante Fernández 755, (3700), Sáenz Peña, Chaco, Argentina.
| | - Carmen Campos
- Departamento de Industrias, Instituto de Tecnología de Alimentos y Procesos Químicos (ITAPROQ), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Int. Güiraldes s/n, (1428), Ciudad Autónoma de Buenos Aires, Argentina
| | - María Elisa Cayré
- Laboratorio de Microbiología de Alimentos, Instituto de Investigaciones en Procesos Tecnológicos Avanzados (INIPTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional del Chaco Austral (UNCAus), Comandante Fernández 755, (3700), Sáenz Peña, Chaco, Argentina
| | - Marcela Castro
- Laboratorio de Microbiología de Alimentos, Instituto de Investigaciones en Procesos Tecnológicos Avanzados (INIPTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional del Chaco Austral (UNCAus), Comandante Fernández 755, (3700), Sáenz Peña, Chaco, Argentina
| |
Collapse
|
9
|
Loffredi E, Alamprese C. Optimisation of a blend of emulsifier substitutes for clean-label artisanal ice cream. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
10
|
Bian X, Wang Y, Wang S, Johnson JB, Sun H, Guo Y, Tan X. A Review of Advanced Methods for the Quantitative Analysis of Single Component Oil in Edible Oil Blends. Foods 2022; 11:foods11162436. [PMID: 36010436 PMCID: PMC9407567 DOI: 10.3390/foods11162436] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/04/2022] [Accepted: 08/11/2022] [Indexed: 12/21/2022] Open
Abstract
Edible oil blends are composed of two or more edible oils in varying proportions, which can ensure nutritional balance compared to oils comprising a single component oil. In view of their economical and nutritional benefits, quantitative analysis of the component oils in edible oil blends is necessary to ensure the rights and interests of consumers and maintain fairness in the edible oil market. Chemometrics combined with modern analytical instruments has become a main analytical technology for the quantitative analysis of edible oil blends. This review summarizes the different oil blend design methods, instrumental techniques and chemometric methods for conducting single component oil quantification in edible oil blends. The aim is to classify and compare the existing analytical techniques to highlight suitable and promising determination methods in this field.
Collapse
Affiliation(s)
- Xihui Bian
- School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China
- Shandong Provincial Key Laboratory of Olefin Catalysis and Polymerization, Shandong Chambroad Holding Group Co., Ltd., Binzhou 256500, China
- Correspondence: ; Tel./Fax: +86-22-83955663
| | - Yao Wang
- School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China
| | - Shuaishuai Wang
- Shandong Provincial Key Laboratory of Olefin Catalysis and Polymerization, Shandong Chambroad Holding Group Co., Ltd., Binzhou 256500, China
| | - Joel B. Johnson
- School of Health, Medical & Applied Sciences, Central Queensland University, Bruce Hwy, North Rockhampton, QLD 4701, Australia
| | - Hao Sun
- School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China
| | - Yugao Guo
- School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China
| | - Xiaoyao Tan
- School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China
| |
Collapse
|
11
|
De Angelis D, Squeo G, Pasqualone A, Summo C. Optimization of formulation and physicochemical, nutritional and sensory evaluation of vegan chickpea-based salad dressings. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:2685-2693. [PMID: 35734110 PMCID: PMC9206952 DOI: 10.1007/s13197-021-05288-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 09/06/2021] [Accepted: 09/28/2021] [Indexed: 06/15/2023]
Abstract
UNLABELLED The formulation of a vegan salad dressing supplemented with chickpea flour (VC-SD) was optimized by D-optimal mixture design, evaluating the effect of chickpea flour, water and oil on the textural properties of the product. The linear models showed the best fitting and predictive ability, as highlighted by high R2 adj and Q2. The Cox-effects of the textural parameters were significant for water and chickpea flour contents, but not for oil. Sensory evaluation indicated that all the VC-SD were characterized by the predominance of pungent/acid odor notes, whereas sourness was the most perceived fundamental taste, together with a sensation of a grainy texture in mouth due to flour particles. Overall, the product can be consumed by vegans and vegetarians because produced without animal-derived ingredients, and is in synergy with the healthful characteristics of Mediterranean diet, in which pulses and extra-virgin olive oil play beneficial roles. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13197-021-05288-x.
Collapse
Affiliation(s)
- Davide De Angelis
- Department of Soil, Plant and Food Science, Food Science and Technology Section (DISSPA), University of Bari Aldo Moro, Via Amendola, 165/A, 70126 Bari, Italy
| | - Giacomo Squeo
- Department of Soil, Plant and Food Science, Food Science and Technology Section (DISSPA), University of Bari Aldo Moro, Via Amendola, 165/A, 70126 Bari, Italy
| | - Antonella Pasqualone
- Department of Soil, Plant and Food Science, Food Science and Technology Section (DISSPA), University of Bari Aldo Moro, Via Amendola, 165/A, 70126 Bari, Italy
| | - Carmine Summo
- Department of Soil, Plant and Food Science, Food Science and Technology Section (DISSPA), University of Bari Aldo Moro, Via Amendola, 165/A, 70126 Bari, Italy
| |
Collapse
|
12
|
Teixeira VMC, da Silva RFG, Gonçalves OH, Pereira C, Barros L, Ferreira IC, Bona E, Leimann FV. Chemometric approaches to evaluate the substitution of synthetic food dyes by natural compounds: The case of nanoencapsulated curcumin, spirulina, and hibiscus extracts. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112786] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
13
|
Altaf NUH, Naz MY, Shukrullah S, Bhatti HN, Irfan M, Alsaiari MA, Rahman S, Niazi UM, Glowacz A, Proniewska K, Wzorek L. Statistically Optimized Production of Saccharides Stabilized Silver Nanoparticles Using Liquid-Plasma Reduction Approach for Antibacterial Treatment of Water. MATERIALS (BASEL, SWITZERLAND) 2021; 14:5841. [PMID: 34640238 PMCID: PMC8510104 DOI: 10.3390/ma14195841] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/28/2021] [Accepted: 10/01/2021] [Indexed: 02/07/2023]
Abstract
Various conventional approaches have been reported for the synthesis of nanomaterials without optimizing the role of synthesis parameters. The unoptimized studies not only raise the process cost but also complicate the physicochemical characteristics of the nanostructures. The liquid-plasma reduction with optimized synthesis parameters is an environmentally friendly and low-cost technique for the synthesis of a range of nanomaterials. This work is focused on the statistically optimized production of silver nanoparticles (AgNPs) by using a liquid-plasma reduction process sustained with an argon plasma jet. A simplex centroid design (SCD) was made in Minitab statistical package to optimize the combined effect of stabilizers on the structural growth and UV absorbance of AgNPs. Different combinations of glucose, fructose, sucrose and lactose stabilizers were tested at five different levels (-2, -1, 0, 1, 2) in SCD. The effect of individual and mixed stabilizers on AgNPs growth parameters was assumed significant when p-value in SCD is less than 0.05. A surface plasmon resonance band was fixed at 302 nm after SCD optimization of UV results. A bond stretching at 1633 cm-1 in FTIR spectra was assigned to C=O, which slightly shifts towards a larger wavelength in the presence of saccharides in the solution. The presence of FCC structured AgNPs with an average size of 15 nm was confirmed from XRD and EDX spectra under optimized conditions. The antibacterial activity of these nanoparticles was checked against Staphylococcus aureus and Escherichia coli strains by adopting the shake flask method. The antibacterial study revealed the slightly better performance of AgNPs against Staph. aureus strain than Escherichia coli.
Collapse
Affiliation(s)
- Noor Ul Huda Altaf
- Department of Physics, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan;
| | - Muhammad Yasin Naz
- Department of Physics, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan;
| | - Shazia Shukrullah
- Department of Physics, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan;
| | - Haq Nawaz Bhatti
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan;
| | - Muhammad Irfan
- Electrical Engineering Department, College of Engineering, Najran University Saudi Arabia, Najran 11001, Saudi Arabia; (M.I.); (S.R.)
| | - Mabkhoot A. Alsaiari
- Empty Qaurter Research Unit, Chemistry Department, College of Science and Art at Sharurah, Najran University Saudi Arabia, Najran 61441, Saudi Arabia;
| | - Saifur Rahman
- Electrical Engineering Department, College of Engineering, Najran University Saudi Arabia, Najran 11001, Saudi Arabia; (M.I.); (S.R.)
| | - Usama Muhammad Niazi
- Department of Mechanical Engineering Technology, National Skills University, Islamabad 44000, Pakistan;
| | - Adam Glowacz
- Department of Automatic Control and Robotics, Faculty of Electrical Engineering, Automatics, AGH University of Science and Technology, al. A. Mickiewicza 30, 30-059 Krakow, Poland;
| | - Klaudia Proniewska
- Department of Bioinformatics and Telemedicine, Jagiellonian University Medical College, Anny 12, 31-008 Krakow, Poland;
| | - Lukasz Wzorek
- Wzorek Systems, ul. Kapelanka 10/18, 30-347 Krakow; Poland;
| |
Collapse
|