1
|
Ezenarro J, Riu J, Ahmed HJ, Busto O, Giussani B, Boqué R. Measurement errors and implications for preprocessing in miniaturised near-infrared spectrometers: Classification of sweet and bitter almonds as a case of study. Talanta 2024; 276:126271. [PMID: 38761663 DOI: 10.1016/j.talanta.2024.126271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/20/2024]
Abstract
Near-infrared (NIR) spectroscopy is a well-established analytical technique that has been used in many applications over the years. Due to the advancements in the semiconductor industry, NIR instruments have evolved from benchtop instruments to miniaturised portable devices. The miniaturised NIR instruments have gained more interest in recent years because of the fast and robust measurements they provide with almost no sample pretreatments. However, due to the very different configurations and characteristics of these instruments, they need a dedicated optimization of the measurement conditions, which is crucial for obtaining reliable results. To comprehensively grasp the capabilities and potentials offered by these sensors, it is imperative to examine errors that can affect the raw data, which is a facet frequently overlooked. In this study, measurement error covariance and correlation matrices were calculated and then visually inspected to gain insight into the error structures associated with the devices, and to find the optimal preprocessing technique that may result in the improvement of the models built. This strategy was applied to the classification of sweet and bitter almonds, which were measured with the three portable low-cost NIR devices (SCiO, FlameNIR+ and NeoSpectra Micro Development Kit) after removing the shelled, since their classification is of utmost importance for the almond industry. The results showed that bitter almonds can be classified from sweet almonds using any of the instruments after selecting the optimal preprocessing, obtained through inspection of covariance and correlation matrices. Measurements obtained with FlameNIR + device provided the best classification models with an accuracy of 98 %. The chosen strategy provides new insight into the performance characterization of the fast-growing miniaturised NIR instruments.
Collapse
Affiliation(s)
- Jokin Ezenarro
- Universitat Rovira i Virgili, Department of Analytical Chemistry and Organic Chemistry, Campus Sescelades, 43007, Tarragona, Catalonia, Spain
| | - Jordi Riu
- Universitat Rovira i Virgili, Department of Analytical Chemistry and Organic Chemistry, Campus Sescelades, 43007, Tarragona, Catalonia, Spain
| | - Hawbeer Jamal Ahmed
- Universitat Rovira i Virgili, Department of Analytical Chemistry and Organic Chemistry, Campus Sescelades, 43007, Tarragona, Catalonia, Spain; United Science Colleges, Department of Chemistry, Bakhan 108, Sulaymaneyah, Iraq
| | - Olga Busto
- Universitat Rovira i Virgili, Department of Analytical Chemistry and Organic Chemistry, Campus Sescelades, 43007, Tarragona, Catalonia, Spain
| | - Barbara Giussani
- Dipartimento di Scienza e Alta Tecnologia, Università degli Studi dell'Insubria, Via Valleggio, 9, 22100, Como, Italy.
| | - Ricard Boqué
- Universitat Rovira i Virgili, Department of Analytical Chemistry and Organic Chemistry, Campus Sescelades, 43007, Tarragona, Catalonia, Spain.
| |
Collapse
|
2
|
Foli LP, Hespanhol MC, Cruz KAML, Pasquini C. Miniaturized Near-Infrared spectrophotometers in forensic analytical science - a critical review. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 315:124297. [PMID: 38640625 DOI: 10.1016/j.saa.2024.124297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/13/2024] [Accepted: 04/14/2024] [Indexed: 04/21/2024]
Abstract
The advent of miniaturized NIR instruments, also known as compact, portable, or handheld, is revolutionizing how technology can be employed in forensics. In-field analysis becomes feasible and affordable with these new instruments, and a series of methods has been developed to provide the police and official agents with objective, easy-to-use, tailored, and accurate qualitative and quantitative forensic results. This work discusses the main aspects and presents a comprehensive and critical review of compact NIR spectrophotometers associated with analytical protocols to produce information on forensic matters.
Collapse
Affiliation(s)
- Letícia P Foli
- Grupo de Análise e Educação para a Sustentabilidade, Departamento de Química, Centro de Ciências Exatas e Tecnológicas, Universidade Federal de Viçosa, Av. P. H. Rolfs, s/n, Viçosa, MG, 36570-900, Brazil
| | - Maria C Hespanhol
- Grupo de Análise e Educação para a Sustentabilidade, Departamento de Química, Centro de Ciências Exatas e Tecnológicas, Universidade Federal de Viçosa, Av. P. H. Rolfs, s/n, Viçosa, MG, 36570-900, Brazil
| | - Kaíque A M L Cruz
- Grupo de Análise e Educação para a Sustentabilidade, Departamento de Química, Centro de Ciências Exatas e Tecnológicas, Universidade Federal de Viçosa, Av. P. H. Rolfs, s/n, Viçosa, MG, 36570-900, Brazil
| | - Celio Pasquini
- Instituto de Química, Universidade Estadual de Campinas (UNICAMP), Rua Monteiro Lobato, 290, Campinas, SP 13083-862, Brazil.
| |
Collapse
|
3
|
Vega-Castellote M, Sánchez MT, Torres-Rodríguez I, Entrenas JA, Pérez-Marín D. NIR Sensing Technologies for the Detection of Fraud in Nuts and Nut Products: A Review. Foods 2024; 13:1612. [PMID: 38890841 PMCID: PMC11172355 DOI: 10.3390/foods13111612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/18/2024] [Accepted: 05/20/2024] [Indexed: 06/20/2024] Open
Abstract
Food fraud is a major threat to the integrity of the nut supply chain. Strategies using a wide range of analytical techniques have been developed over the past few years to detect fraud and to assure the quality, safety, and authenticity of nut products. However, most of these techniques present the limitations of being slow and destructive and entailing a high cost per analysis. Nevertheless, near-infrared (NIR) spectroscopy and NIR imaging techniques represent a suitable non-destructive alternative to prevent fraud in the nut industry with the advantages of a high throughput and low cost per analysis. This review collects and includes all major findings of all of the published studies focused on the application of NIR spectroscopy and NIR imaging technologies to detect fraud in the nut supply chain from 2018 onwards. The results suggest that NIR spectroscopy and NIR imaging are suitable technologies to detect the main types of fraud in nuts.
Collapse
Affiliation(s)
- Miguel Vega-Castellote
- Department of Bromatology and Food Technology, University of Cordoba, Rabanales Campus, 14071 Córdoba, Spain;
| | - María-Teresa Sánchez
- Department of Bromatology and Food Technology, University of Cordoba, Rabanales Campus, 14071 Córdoba, Spain;
| | - Irina Torres-Rodríguez
- Department of Animal Production, University of Cordoba, Rabanales Campus, 14071 Córdoba, Spain; (I.T.-R.); (J.-A.E.)
| | - José-Antonio Entrenas
- Department of Animal Production, University of Cordoba, Rabanales Campus, 14071 Córdoba, Spain; (I.T.-R.); (J.-A.E.)
| | - Dolores Pérez-Marín
- Department of Animal Production, University of Cordoba, Rabanales Campus, 14071 Córdoba, Spain; (I.T.-R.); (J.-A.E.)
| |
Collapse
|
4
|
Gullifa G, Barone L, Papa E, Giuffrida A, Materazzi S, Risoluti R. Portable NIR spectroscopy: the route to green analytical chemistry. Front Chem 2023; 11:1214825. [PMID: 37818482 PMCID: PMC10561305 DOI: 10.3389/fchem.2023.1214825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 09/07/2023] [Indexed: 10/12/2023] Open
Abstract
There is a growing interest for cost-effective and nondestructive analytical techniques in both research and application fields. The growing approach by near-infrared spectroscopy (NIRs) pushes to develop handheld devices devoted to be easily applied for in situ determinations. Consequently, portable NIR spectrometers actually result definitively recognized as powerful instruments, able to perform nondestructive, online, or in situ analyses, and useful tools characterized by increasingly smaller size, lower cost, higher robustness, easy-to-use by operator, portable and with ergonomic profile. Chemometrics play a fundamental role to obtain useful and meaningful results from NIR spectra. In this review, portable NIRs applications, published in the period 2019-2022, have been selected to indicate starting references. These publications have been chosen among the many examples of the most recent applications to demonstrate the potential of this analytical approach which, not having the need for extraction processes or any other pre-treatment of the sample under examination, can be considered the "true green analytical chemistry" which allows the analysis where the sample to be characterized is located. In the case of industrial processes or plant or animal samples, it is even possible to follow the variation or evolution of fundamental parameters over time. Publications of specific applications in this field continuously appear in the literature, often in unfamiliar journal or in dedicated special issues. This review aims to give starting references, sometimes not easy to be found.
Collapse
Affiliation(s)
- G. Gullifa
- Department of Chemistry, “Sapienza” Università di Roma, Rome, Italy
| | - L. Barone
- Department of Chemistry, “Sapienza” Università di Roma, Rome, Italy
| | - E. Papa
- Department of Chemistry, “Sapienza” Università di Roma, Rome, Italy
| | - A. Giuffrida
- Department of Chemical Sciences, University of Catania, Catania, Italy
| | - S. Materazzi
- Department of Chemistry, “Sapienza” Università di Roma, Rome, Italy
| | - R. Risoluti
- Department of Chemistry, “Sapienza” Università di Roma, Rome, Italy
| |
Collapse
|
5
|
Jiang Z, Lv A, Zhong L, Yang J, Xu X, Li Y, Liu Y, Fan Q, Shao Q, Zhang A. Rapid Prediction of Adulteration Content in Atractylodis rhizoma Based on Data and Image Features Fusions from Near-Infrared Spectroscopy and Hyperspectral Imaging Techniques. Foods 2023; 12:2904. [PMID: 37569173 PMCID: PMC10417609 DOI: 10.3390/foods12152904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
Atractylodis rhizoma (AR) is an herb and food source with great economic, medicinal, and ecological value. Atractylodes chinensis (DC.) Koidz. (AC) and Atractylodes lancea (Thunb.) DC. (AL) are its two botanical sources. The commercial fraud of AR adulterated with Atractylodes japonica Koidz. ex Kitam (AJ) frequently occurs in pursuit of higher profit. To quickly determine the content of adulteration in AC and AL powder, two spectroscopic techniques, near-infrared spectroscopy (NIRS) and hyperspectral imaging (HSI), were introduced. The partial least squares regression (PLSR) algorithm was selected for predictive modeling of AR adulteration levels. Preprocessing and feature variable extraction were used to optimize the prediction model. Then data and image feature fusions were developed to obtain the best predictive model. The results showed that if only single-spectral techniques were considered, NIRS was more suitable for both tasks than HSI techniques. In addition, by comparing the models built after the data fusion of NIRS and HSI with those built by the single spectrum, we found that the mid-level fusion strategy obtained the best models in both tasks. On this basis, combined with the color-texture features, the prediction ability of the model was further optimized. Among them, for the adulteration level prediction task of AC, the best strategy was combining MLF data (at CARS level) and color-texture features (C-TF), at which time the R2T, RMSET, R2P, and RMSEP were 99.85%, 1.25%, 98.61%, and 5.06%, respectively. For AL, the best approach was combining MLF data (at SPA level) and C-TF, with the highest R2T (99.92%) and R2P (99.00%), as well as the lowest RMSET (1.16%) and RMSEP (2.16%). Therefore, combining data and image features from NIRS and HSI is a potential strategy to predict the adulteration content quickly, non-destructively, and accurately.
Collapse
Affiliation(s)
- Zhiwei Jiang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China (Y.L.); (Q.S.)
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Aimin Lv
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China (Y.L.); (Q.S.)
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Lingjiao Zhong
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China (Y.L.); (Q.S.)
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Jingjing Yang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China (Y.L.); (Q.S.)
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Xiaowei Xu
- Wenzhou Forestry Technology Promotion and Wildlife Protection Management Station, Wenzhou 325027, China
| | - Yuchan Li
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China (Y.L.); (Q.S.)
| | - Yuchen Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China (Y.L.); (Q.S.)
| | - Qiuju Fan
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China (Y.L.); (Q.S.)
| | - Qingsong Shao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China (Y.L.); (Q.S.)
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Ailian Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China (Y.L.); (Q.S.)
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
6
|
Zhang F, Zhang Y, Shi L, Li L, Cui X, Gao Y. Application of portable near‐infrared spectroscopy technology for grade identification of Panax notoginseng slices. J Food Saf 2023. [DOI: 10.1111/jfs.13033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Fujie Zhang
- Faculty of Modern Agricultural Engineering Kunming University of Science and Technology Kunming China
| | - Yu Zhang
- Faculty of Modern Agricultural Engineering Kunming University of Science and Technology Kunming China
| | - Lei Shi
- Faculty of Modern Agricultural Engineering Kunming University of Science and Technology Kunming China
| | - Lixia Li
- Faculty of Modern Agricultural Engineering Kunming University of Science and Technology Kunming China
| | - Xiuming Cui
- Yunnan Key Laboratory of Sustainable Utilization of Panax Notoginseng Kunming University of Science and Technology Kunming China
| | - Yongping Gao
- Yixintang Pharmaceutical Group Ltd. Kunming China
| |
Collapse
|
7
|
Pizzo JS, Cruz VHM, Manin LP, Santos PDS, Silva GR, Souza PM, Figueiredo AL, Santos OO, Visentainer JV. First report on quality and purity assessment of sweet almond oil in Brazilian body oils by gas chromatography and mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2023; 58:e4900. [PMID: 36688359 DOI: 10.1002/jms.4900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/16/2022] [Accepted: 09/21/2022] [Indexed: 06/17/2023]
Abstract
Sweet almond oil is a raw material with high-added value used in different products. Then, the aim of this study is to evaluate the quality and purity of 10 body oils based on sweet almond oils currently available in the Brazilian market. Fatty acid composition and triacylglycerol (TAG) profile were determined by gas chromatography with flame ionization detector (GC-FID) and atmospheric solids analysis probe mass spectrometry (ASAP-MS), respectively. The authenticity of samples was assessed using an analytical curve equation. Soybean oil was chosen as the adulterant because it is the cheapest vegetable oil commercialized in Brazil. Hierarchical clustering analysis (HCA) in conjunction with ASAP-MS classified product samples according to the type of vegetable oil (soybean and sweet almond oils). The addition of soybean oil (8.79% to 99.70%) was confirmed in samples. However, only two samples stated in their label the presence of soybean oil as an ingredient. These findings highlight the need for better oversight by regulatory bodies to ensure that consumers acquire high quality and authentic products based on equally high quality and purity of sweet almond oils.
Collapse
Affiliation(s)
- Jessica S Pizzo
- Department of Chemistry, State University of Maringá (UEM), Maringá, Paraná, 87020-900, Brazil
| | - Victor H M Cruz
- Department of Chemistry, State University of Maringá (UEM), Maringá, Paraná, 87020-900, Brazil
| | - Luciana P Manin
- Post-Graduate Program in Food Science, State University of Maringá (UEM), Maringá, Paraná, 87020-900, Brazil
| | - Patricia D S Santos
- Department of Chemistry, State University of Maringá (UEM), Maringá, Paraná, 87020-900, Brazil
| | - Geovane R Silva
- Department of Chemistry, State University of Maringá (UEM), Maringá, Paraná, 87020-900, Brazil
| | - Patrícia M Souza
- Department of Chemistry, State University of Maringá (UEM), Maringá, Paraná, 87020-900, Brazil
| | - Alisson L Figueiredo
- Department of Chemistry, State University of Maringá (UEM), Maringá, Paraná, 87020-900, Brazil
| | - Oscar O Santos
- Department of Chemistry, State University of Maringá (UEM), Maringá, Paraná, 87020-900, Brazil
| | - Jesuí V Visentainer
- Department of Chemistry, State University of Maringá (UEM), Maringá, Paraná, 87020-900, Brazil
- Post-Graduate Program in Food Science, State University of Maringá (UEM), Maringá, Paraná, 87020-900, Brazil
| |
Collapse
|
8
|
Quality Assessment of the Protein Ingredients Recovered by Ultrasound-Assisted Extraction from the Press Cakes of Coconut and Almond Beverage Preparation. Foods 2022; 11:foods11223693. [PMID: 36429285 PMCID: PMC9689247 DOI: 10.3390/foods11223693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/07/2022] [Accepted: 11/16/2022] [Indexed: 11/19/2022] Open
Abstract
The manufacture of vegetal beverages has the drawback of producing large amounts of press cakes that are generally used as feed components. This work had the objective of valorizing the press cakes deriving from almond and coconut drinks production by using ultrasound-assisted extraction (UAE) to obtain protein ingredients for human use. Starting from coconut and almond press cakes, whose initial protein contents were 19.7% and 18.6%, respectively, the UAE treatment allowed liquid fractions to be obtained that were then freeze-dried: the extraction yields were 24.4 g dry extract/100 g press cake in case of coconut and 49.3 g dry extract/100 g press cake in case of almond. The protein contents of these dried materials were 30.10% and 22.88%, respectively. The quality of the extracted protein ingredients was assessed in term of phytic acid content, protein profile, techno-functional features, and antioxidant properties. The sonication had also a favorable effect on digestibility.
Collapse
|
9
|
Rapid detection of Ganoderma lucidum spore powder adulterated with dyed starch by NIR spectroscopy and chemometrics. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
10
|
Hyperspectral Imaging for the Detection of Bitter Almonds in Sweet Almond Batches. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12104842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A common fraud in the sweet almond industry is the presence of bitter almonds in commercial batches. The presence of bitter almonds not only causes unpleasant flavours but also problems in the commercialisation and toxicity for consumers. Hyperspectral Imaging (HSI) has been proved to be suitable for the rapid and non-destructive quality evaluation in foods as it integrates the spectral and spatial dimensions. Thus, we aimed to study the feasibility of using an HSI system to identify single bitter almond kernels in commercial sweet almond batches. For this purpose, sweet and bitter almond batches, as well as different mixtures, were analysed in bulk using an HSI system which works in the spectral range 946.6–1648.0 nm. Qualitative models were developed using Partial Least Squares-Discriminant Analysis (PLS-DA) to differentiate between sweet and bitter almonds, obtaining a classification success of over the 99%. Furthermore, data reduction, as a function of the most relevant wavelengths (VIP scores), was applied to evaluate its performance. Then, the pixel-by-pixel validation of the mixtures was carried out, identifying correctly between 61–85% of the adulterations, depending on the group of mixtures and the cultivar analysed. The results confirm that HSI, without VIP scores data reduction, can be considered a promising approach for classifying the bitterness of almonds analysed in bulk, enabling identifying individual bitter almonds inside sweet almond batches. However, a more complex mathematical analysis is necessary before its implementation in the processing lines.
Collapse
|
11
|
Chen MJ, Yin HL, Liu Y, Wang RR, Jiang LW, Li P. Non-destructive prediction of the hotness of fresh pepper with a single scan using portable near infrared spectroscopy and a variable selection strategy. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:114-124. [PMID: 34913444 DOI: 10.1039/d1ay01634b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
There has been no study on using near-infrared spectroscopy (NIRS) to predict the hotness of fresh pepper. This study is aimed at developing a non-destructive and accurate method for determining the hotness of fresh peppers using portable NIRS and the variable selection strategy. Spectra from different locations on samples were obtained non-destructively with a single scan. Quantitative models were established using partial least squares (PLS) with a variable selection method or fusion method. The results showed that near-stalk was the best spectral acquisition location for quantitative analysis. The variable selection strategy allows the selection of targeted characteristic variables and improves the results. A fusion method, namely variable adaptive boosting partial least squares (VABPLS), was selected for optimal prediction of the performance. In the optimized model, the root mean square errors of prediction for the validation set (RMSEPvs) of capsaicin, dihydrocapsaicin and pungency degree were 0.295, 0.143 and 47.770, respectively, while the root mean square errors of prediction for the prediction set (RMSEPps) collected one month later were 0.273, 0.346 and 75.524, respectively.
Collapse
Affiliation(s)
- Meng-Juan Chen
- College of Food Science and Technology, Hunan Provincial Key Laboratory of Food Science and Biotechnology, Hunan Agricultural University, Changsha 410125, P. R. China.
| | - Han-Liang Yin
- College of Food Science and Technology, Hunan Provincial Key Laboratory of Food Science and Biotechnology, Hunan Agricultural University, Changsha 410125, P. R. China.
| | - Yang Liu
- College of Food Science and Technology, Hunan Provincial Key Laboratory of Food Science and Biotechnology, Hunan Agricultural University, Changsha 410125, P. R. China.
| | - Rong-Rong Wang
- College of Food Science and Technology, Hunan Provincial Key Laboratory of Food Science and Biotechnology, Hunan Agricultural University, Changsha 410125, P. R. China.
| | - Li-Wen Jiang
- College of Food Science and Technology, Hunan Provincial Key Laboratory of Food Science and Biotechnology, Hunan Agricultural University, Changsha 410125, P. R. China.
| | - Pao Li
- College of Food Science and Technology, Hunan Provincial Key Laboratory of Food Science and Biotechnology, Hunan Agricultural University, Changsha 410125, P. R. China.
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, P. R. China
| |
Collapse
|