1
|
Li M, Li J, Li C, Shi Y, Wang Y, Sun L, Liu X. Three physical modifications enhanced the binding interactions of Cyperus esculentus protein with proanthocyanidins and physicochemical properties of complexes: The contribution of non-covalent interactions. Food Chem 2025; 479:143611. [PMID: 40086391 DOI: 10.1016/j.foodchem.2025.143611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/16/2025] [Accepted: 02/23/2025] [Indexed: 03/16/2025]
Abstract
This study investigated non-covalent interactions between unmodified/modified (ball-milling, BMP; high pressure homogenization, HPHP; cold plasma, CPP) Cyperus esculentus protein (CEP) and proanthocyanidins (PA and PB2) to evaluate structure, functionalities and potential in emulsions. The PA and PB2 addition significantly increased the turbidity and ζ-potential of CEP samples, as confirmed by aggregations observed via atomic force microscopy, validating the formation of protein-proanthocyanidin complexes. Fluorescence quenching and isothermal titration calorimetry revealed that procyanidins caused CEP sample static quenching, with CEP-proanthocyanidins binding affinity order as CPP > HPHP>BMP > CEP. The CEP-proanthocyanidins involve non-covalent interactions, driven by hydrogen bonding and electrostatic interactions, without altering CEP sample spectral bands and secondary structures, but enhancing thermal stabilities, antioxidant activities, and emulsifying properties. Then, the CPP-PA stabilized emulsion droplet size decreased with aqueous phase pH increasing, contrary to ζ-potential values. Conclusively, these findings illustrated that the modified CEP-proanthocyanidin complexes as a promising strategy for addressing these challenges and stabilizing emulsion.
Collapse
Affiliation(s)
- Mengqing Li
- College of Food Science and Engineering, Northwest A & F University, China
| | - Jing Li
- College of Food Science and Engineering, Northwest A & F University, China
| | - Caixia Li
- College of Food Science and Engineering, Northwest A & F University, China
| | - Yijie Shi
- College of Food Science and Engineering, Northwest A & F University, China
| | - Yutang Wang
- College of Food Science and Engineering, Northwest A & F University, China.
| | - Lijun Sun
- College of Food Science and Engineering, Northwest A & F University, China.
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A & F University, China
| |
Collapse
|
2
|
Zhou JJ, Zhang X, Yu CY, Sun PP, Ren YY. Structural characteristics of cell wall pectic polysaccharides from wampee and their decreased binding with pectinase by wampee polyphenol. Food Chem 2024; 459:140438. [PMID: 39024878 DOI: 10.1016/j.foodchem.2024.140438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/20/2024]
Abstract
To investigate the structural characteristics of cell wall pectic polysaccharides from wampee, water soluble pectin (WSP), chelator-soluble pectin (CSP) and sodium carbonate-soluble pectin (SSP) were purified. And the inhibitory effects of wampee polyphenol (WPP) on pectinase when these cell wall pectic polysaccharides were used as substrates were also explored. Purified WSP (namely PWSP) had the lowest molecular weight (8.47 × 105 Da) and the highest GalA content (33.43%). While purified CSP (called PCSP) and SSP contained more abundant rhamnogalacturonan I side chains. All of them were low-methoxy pectin (DE < 50%). Enzyme activity and kinetics analysis showed that the inhibition of pectinase by wampee polyphenol was reversible and mixed type. When SSP was used as the substrate, WPP had the strongest inhibition (IC50 = 1.96 ± 0.06 mg/mL) on pectinase. Fluorescence quenching results indicated that WPP inhibited enzyme activity by interacting with substrates and enzymes. Therefore, WPP has the application potential in controlling softening of fruits and vegetables.
Collapse
Affiliation(s)
- Jue-Jun Zhou
- College of Life Science, Yangtze University, Jingzhou, Hubei 434023, PR China
| | - Xu Zhang
- College of Life Science, Yangtze University, Jingzhou, Hubei 434023, PR China
| | - Chong-Yang Yu
- College of Life Science, Yangtze University, Jingzhou, Hubei 434023, PR China
| | - Peng-Peng Sun
- College of Life Science, Yangtze University, Jingzhou, Hubei 434023, PR China
| | - Yuan-Yuan Ren
- College of Life Science, Yangtze University, Jingzhou, Hubei 434023, PR China.
| |
Collapse
|
3
|
Montes L, Santamaria M, Garzon R, Rosell CM, Moreira R. Effect of polyphenols from Ascophyllum nodosum seaweeds on the rheology and digestion of corn starch gels and gluten-free bread features. Heliyon 2024; 10:e27469. [PMID: 38689966 PMCID: PMC11059404 DOI: 10.1016/j.heliyon.2024.e27469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/19/2024] [Accepted: 02/29/2024] [Indexed: 05/02/2024] Open
Abstract
The main objective of this work is to study the effect of polyphenols, from the brown seaweed Ascophyllum nodosum, on the structure and digestion behaviour of gels at two corn starch concentrations (1.95 and 5.00% w/w) as well as the structure, color and texture features of crumbs from gluten-free breads. Adsorption isotherms of polyphenols on native and gelled starches were carried out and modelled by means of Langmuir and Henry models, respectively. The formation and characteristics of tested gels were rheologically monitored by means of heating ramp, time sweep at high temperature, cooling ramp and frequency sweep at 25 °C. Elastic modulus values decreased with the presence of polyphenols. Additionally, the polyphenols significantly decreased the digestion rate, measured by both chemical and rheological procedures, and the final concentration of digested starch. Finally, the presence of polyphenols in breads increased the hardness and chewiness values and decreased the cohesiveness and resilience values as well as the crumb hardening during storage.
Collapse
Affiliation(s)
- Leticia Montes
- Department of Chemical Engineering, Universidade de Santiago de Compostela, rúa Lope Gómez de Marzoa, s/n. 15782, Santiago de Compostela, Spain
| | - Maria Santamaria
- Institute of Agrochemistry and Food Technology (IATA-CSIC), C/Agustin Escardino, 7, 46980, Paterna, Spain
| | - Raquel Garzon
- Institute of Agrochemistry and Food Technology (IATA-CSIC), C/Agustin Escardino, 7, 46980, Paterna, Spain
| | - Cristina M. Rosell
- Institute of Agrochemistry and Food Technology (IATA-CSIC), C/Agustin Escardino, 7, 46980, Paterna, Spain
- Department of Food and Human Nutritional Sciences. University of Manitoba, Winnipeg, Canada
| | - Ramón Moreira
- Department of Chemical Engineering, Universidade de Santiago de Compostela, rúa Lope Gómez de Marzoa, s/n. 15782, Santiago de Compostela, Spain
| |
Collapse
|
4
|
Li C, Li W, Zhang X, Wang G, Liu X, Wang Y, Sun L. The changed structures of Cyperus esculentus protein decide its modified physicochemical characters: Effects of ball-milling, high pressure homogenization and cold plasma treatments on structural and functional properties of the protein. Food Chem 2024; 430:137042. [PMID: 37527578 DOI: 10.1016/j.foodchem.2023.137042] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/07/2023] [Accepted: 07/26/2023] [Indexed: 08/03/2023]
Abstract
Three physical treatments, including ball-milling (BM), high pressure homogenization (HPH) and cold plasma (CP) were applied to modify structural and functional properties of Cyperus esculentus protein (CEP). The results showed that three treatments significantly altered morphology and reduced particle size of CEP. Both primary and secondary structures of CEP were hardly changed, while disulfide bonds and hydrophobic forces between amino acid residues of CEP were interrupted by three treatments, releasing free sulfhydryls and hydrophobic groups. With the free moiety accumulation, the reformed interactions between them enhanced the crystallinity and thermostability of CEP. Besides, solubility and emulsifying properties of CEP were significantly improved within a certain range of treatment duration and intensity, and three treatments decreased water but increased oil holding capacity of CEP. Conclusively, the modified physicochemical properties of CEP were decided by the changed molecular structures of CEP, and different treatments may satisfy different processing requirements for the protein.
Collapse
Affiliation(s)
- Caixia Li
- College of Food Science and Engineering, Northwest A & F University, China
| | - Wenyue Li
- College of Food Science and Engineering, Northwest A & F University, China
| | - Xia Zhang
- College of Forestry, Northwest A & F University, China; Shaanxi Jiangwo Runfeng Agricultural Development Co., Ltd., China
| | - Guidan Wang
- College of Food Science and Engineering, Northwest A & F University, China
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A & F University, China
| | - Yutang Wang
- College of Food Science and Engineering, Northwest A & F University, China.
| | - Lijun Sun
- College of Food Science and Engineering, Northwest A & F University, China.
| |
Collapse
|
5
|
Cui XR, Wang YS, Chen Y, Mu HY, Chen HH. Understanding the digestibility of wheat starch- caffeic acid complexes prepared by hot-extrusion 3D printing technology. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
6
|
Li J, Zhang J, Yu W, Gao H, Szeto IMY, Feng H, Liu X, Wang Y, Sun L. Soluble dietary fibres decrease α-glucosidase inhibition of epigallocatechin gallate through affecting polyphenol-enzyme binding interactions. Food Chem 2023; 409:135327. [PMID: 36586254 DOI: 10.1016/j.foodchem.2022.135327] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 12/05/2022] [Accepted: 12/24/2022] [Indexed: 12/28/2022]
Abstract
The effects of soluble dietary fibres (SDFs) on α-glucosidase inhibition of EGCG were studied. Three arabinoxylans and polygalacturonic acid (PGA) significantly decreased inhibitory activity of EGCG against α-glucosidase, while two β-glucans hardly affected the inhibition. Although arabinoxylans and PGA weakened the competitive inhibition character of EGCG, they maintained the fluorescence quenching effect of EGCG. Then, arabinoxylans and PGA significantly decreased the particle size and turbidity of EGCG-enzyme complex. These results suggest that there formed SDFs-EGCG-enzyme ternary complexes. The stronger decreasing-effects of arabinoxylans and PGA on α-glucosidase inhibition of EGCG than β-glucans resulted from the stronger non-covalent interactions of arabinoxylans and PGA with EGCG. This is considered to arise from the short-branches of arabinoxylans that provided more opportunity for capturing EGCG, and from the strong polarity of PGA carboxyl that promoted hydrogen bondings with EGCG. Conclusively, SDFs should be considered as an impact factor when evaluating α-glucosidase inhibition of dietary polyphenols.
Collapse
Affiliation(s)
- Jing Li
- College of Food Science and Engineering, Northwest A & F University, China
| | - Jifan Zhang
- College of Food Science and Engineering, Northwest A & F University, China
| | - Wanyi Yu
- College of Food Science and Engineering, Northwest A & F University, China
| | - Hang Gao
- College of Food Science and Engineering, Northwest A & F University, China
| | | | - Haotian Feng
- Inner Mongolia Dairy Technology Research Institute Co., Ltd, China
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A & F University, China
| | - Yutang Wang
- College of Food Science and Engineering, Northwest A & F University, China
| | - Lijun Sun
- College of Food Science and Engineering, Northwest A & F University, China.
| |
Collapse
|
7
|
Zhang J, Li C, Wang G, Cao J, Yang X, Liu X, Sun L. α-Amylase inhibition of a certain dietary polyphenol is predominantly affected by the concentration of α-1, 4-glucosidic bonds in starchy and artificial substrates. Food Res Int 2022; 157:111210. [DOI: 10.1016/j.foodres.2022.111210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/24/2022] [Accepted: 03/31/2022] [Indexed: 11/04/2022]
|
8
|
Gisbert M, Aleixandre A, Sineiro J, Rosell CM, Moreira R. Interactions between Ascophyllum nodosum Seaweeds Polyphenols and Native and Gelled Corn Starches. Foods 2022; 11:foods11081165. [PMID: 35454752 PMCID: PMC9029316 DOI: 10.3390/foods11081165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 02/01/2023] Open
Abstract
The effect of several blending procedures between Ascophyllum nodosum seaweed flour (AF) and corn starch (CS) on the interactions between polyphenols and starch was studied in this paper. These methods comprised the blending of AF with native starch (NT) with previously gelled starch gel (GL) and promoting the gelling of corn starch in the presence of AF (CGL). Different AF-CS (g/g) ratios (from 1:0.5 to 1:25) were studied. The liquid phase was chemically characterized by polyphenols (TPC) and carbohydrates content. The antioxidant activity of the liquid phase after achieving the solid-liquid equilibrium was determined by DPPH, ABTS, and FRAP methods. The solid phase was characterized by FT-IR and SEM techniques. The Halsey model successfully fitted the equilibrium TPC in liquid and polyphenols adsorbed/retained by the solid phase of tested systems. NT samples showed lower polyphenols sorption than gelled samples. The differences found between samples obtained with GL and CGL methods suggested different interactions between polyphenols and starch. Specifically, physisorption is predominant in the case of the GL method, and molecular trapping of polyphenols in the starch gel structure is relevant for the CGL method. Results allowed us to determine the enhancement of the retention of polyphenols to achieve starchy foods with high bioactivity.
Collapse
Affiliation(s)
- Mauro Gisbert
- Chemical Engineering Department, Universidade de Santiago de Compostela, Campus Vida, 15782 Santiago de Compostela, Spain; (M.G.); (J.S.)
| | - Andrea Aleixandre
- Institute of Agrochemistry and Food Technology, Spanish Council for Science Research (CSIC), 46980 Valencia, Spain; (A.A.); or (C.M.R.)
| | - Jorge Sineiro
- Chemical Engineering Department, Universidade de Santiago de Compostela, Campus Vida, 15782 Santiago de Compostela, Spain; (M.G.); (J.S.)
| | - Cristina M. Rosell
- Institute of Agrochemistry and Food Technology, Spanish Council for Science Research (CSIC), 46980 Valencia, Spain; (A.A.); or (C.M.R.)
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Ramón Moreira
- Chemical Engineering Department, Universidade de Santiago de Compostela, Campus Vida, 15782 Santiago de Compostela, Spain; (M.G.); (J.S.)
- Correspondence: ; Tel.: +34-88-181-6759
| |
Collapse
|
9
|
Li S, Wu W, Li J, Zhu S, Yang X, Sun L. α-Amylase Changed the Catalytic Behaviors of Amyloglucosidase Regarding Starch Digestion Both in the Absence and Presence of Tannic Acid. Front Nutr 2022; 9:817039. [PMID: 35495955 PMCID: PMC9043763 DOI: 10.3389/fnut.2022.817039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 03/01/2022] [Indexed: 11/13/2022] Open
Abstract
The courses of starch digestion with individual α-amylase (AA), amyloglucosidase (AMG), and AA/AMG bi-enzyme system were performed and analyzed by first-order-reaction equations in the absence and presence of tannic acid (TA). An antagonistic effect between AA and AMG occurred at the digestion phase of readily-digestible starch due to the higher catalytic efficiency of AMG for starchy-substrates with more complex structures. This effect caused a faster rate of glucose production with AMG than with AA/AMG bi-enzyme system at this phase both in the absence and presence of TA. TA had a higher binding affinity to AA than to AMG as accessed by several methods, such as inhibition kinetics, fluorescence quenching, isothermal titration calorimetry (ITC), and molecular docking. Besides, differential scanning calorimetry (DSC) indicated that the change in the thermal and structural stabilities of enzymes in the presence of TA was related to the enzyme residues involved in binding with TA, rather than the inhibitory effects of TA. The binding characters of TA to both enzymes resulted in more “free” AMG without TA binding in AA/AMG bi-enzyme system than that in individual AMG. This binding property caused more and faster rate of glucose production at the digestion phase of slowly digestible starch (SDS) in the bi-enzyme system.
Collapse
|
10
|
Dai H, Chen Y, Zhang S, Feng X, Cui B, Ma L, Zhang Y. Enhanced Interface Properties and Stability of Lignocellulose Nanocrystals Stabilized Pickering Emulsions: The Leading Role of Tannic Acid. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:14650-14661. [PMID: 34813326 DOI: 10.1021/acs.jafc.1c04930] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Cellulose and tannin are both abundant and biodegradable biopolymers, whose integrations show great potential in the food field due to their nutritional properties and biological activity. Here, lignocellulose nanocrystals (LCNC) isolated from pineapple peel were complexed with tannic acid (TA) through hydrogen-bonding interaction to prepare the LCNC/TA complex for stabilizing Pickering emulsions. Introducing TA decreased the interfacial tension (23.8-20.1 mN/m) and water contact angle (83.2-56.2°) with the LCNC/TA ratio ranging from 1:0 to 1:0.8 (w/w) but increased the size of the LCNC/TA complex. The droplet size of emulsions decreased from 115.0 to 51.3 μm accompanied by improved rheological properties. The emulsions stabilized by the LCNC/TA complex exhibited higher storage and environmental stabilities than those stabilized by LCNC alone. Interestingly, TA effectively promoted the interfacial adsorption of LCNC to build a stronger interfacial layer. The emulsion network structure was enhanced due to the formation of hydrogen-bonding interaction between LCNC and TA in the continuous phase.
Collapse
Affiliation(s)
- Hongjie Dai
- College of Food Science, Southwest University, No. 2, Tiansheng Road, Beibei District, Chongqing 400715, China
| | - Yuan Chen
- College of Food Science, Southwest University, No. 2, Tiansheng Road, Beibei District, Chongqing 400715, China
| | - Shumin Zhang
- College of Food Science, Southwest University, No. 2, Tiansheng Road, Beibei District, Chongqing 400715, China
| | - Xin Feng
- College of Food Science, Southwest University, No. 2, Tiansheng Road, Beibei District, Chongqing 400715, China
| | - Bo Cui
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Liang Ma
- College of Food Science, Southwest University, No. 2, Tiansheng Road, Beibei District, Chongqing 400715, China
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing 400715, China
| | - Yuhao Zhang
- College of Food Science, Southwest University, No. 2, Tiansheng Road, Beibei District, Chongqing 400715, China
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing 400715, China
| |
Collapse
|
11
|
Wang J, Ma T, Wang L, Lan T, Fang Y, Sun X. Research on the Consumption Trend, Nutritional Value, Biological Activity Evaluation, and Sensory Properties of Mini Fruits and Vegetables. Foods 2021; 10:foods10122966. [PMID: 34945517 PMCID: PMC8700999 DOI: 10.3390/foods10122966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/21/2021] [Accepted: 11/24/2021] [Indexed: 11/16/2022] Open
Abstract
Mini fruits and vegetables (MFV) are pocket fruits and vegetables whose shape and volume are significantly smaller than those widely sold and well-known normal fruits and vegetables (NFV) on the market. Through the research on the market status and consumption trends of MFV, it was found that MFV have recently become a new market favorite. However, compared with NFV, there was found to be no relevant data on sensory quality, nutritional value, safety, etc. of MFV; this could indicate low consumer awareness of MFV, which in turn affects their planting and sales choices, as well as the market scale remaining small. In this context, six MFV with high degree of marketization were selected and compared with their corresponding NFV to evaluate the nutritional value, biological activity, and sensory properties. The results showed the nutritional value of MFV to be mainly related to their species. The nutritional value of MFV derived from immature, tender vegetables was generally lower than that of mature NFV. For example, the content of zeaxanthin in normal maize was 0.43 mg/kg, which was about 2.87 times that of mini maize (0.15 mg/kg). For newly cultivated mini varieties, their nutritional value often had different trends and rules compared with NFV. The nutritional value obtained by consuming MFV is not equal to that obtained by consuming the corresponding NFV of the same weight.
Collapse
|