1
|
Dhakal S, Jüterbock AO, Lei X, Khanal P. Application of the brown macroalga Saccharina latissima (Laminariales, Phaeophyceae) as a feed ingredient for livestock: A review. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 19:153-165. [PMID: 39635414 PMCID: PMC11615894 DOI: 10.1016/j.aninu.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 06/11/2024] [Accepted: 07/16/2024] [Indexed: 12/07/2024]
Abstract
In recent years, marine macroalgae have been recognized as potential alternative and sustainable feeding resources for livestock. Differences in nutritional values and biomass yield across macroalgal species are critical factors while aiming to utilize them as animal feed components. A brown macroalga, Saccharina latissima, also known as sugar kelp, has a promising biomass yield and high nutritional and bioactive compounds that can benefit both ruminant and monogastric animals. For example, the dietary inclusion of S. latissima in dairy and beef cattle can enhance milk yield, meat quality, and iodine content in milk and meat while reducing enteric methane emissions in vitro. However, high iodine content and the presence of some potentially toxic elements (arsenic, cadmium, etc.) lead to critical challenges, demanding careful consideration while determining the inclusion level of S. latissima in the livestock feed. To address these challenges, effective post-harvest biomass processing techniques, particularly hydrothermal treatments, have shown promise in reducing heavy metals and minerals of concern (e.g., iodine) and enhancing their safety as animal feed. It is thus essential to evaluate the sustainability of post-harvest processing techniques as they are usually energy-demanding and can negatively influence nutrient utilization in animals as certain digestible fractions can disappear during processing. Furthermore, variations in the nutritional and bioactive composition of S. latissima due to seasonal and spatial factors can create challenges for commercial exploitation. In this context, multiple harvesting of biomass and choosing the appropriate harvesting seasons can maximize the nutritional potential of S. latissima. In conclusion, S. latissima can be a novel feed ingredient for livestock, but year-round biomass availability and identifying cost-effective and energy-efficient post-harvest biomass processing methods that optimize both nutritional values and digestibility of S. latissima are critical for improving animal production, performance, and health.
Collapse
Affiliation(s)
- Sachin Dhakal
- Animal Science, Production and Welfare Division, Faculty of Biosciences and Aquaculture (FBA), Nord University, Steinkjer 7713, Norway
| | - Alexander Oliver Jüterbock
- Algal and Microbial Technology Division, Faculty of Biosciences and Aquaculture (FBA), Nord University, Bodø 8049, Norway
| | - Xingen Lei
- Department of Animal Science, College of Agriculture and Life Sciences (CALS), Cornell University, Ithaca, NY 14853, USA
| | - Prabhat Khanal
- Animal Science, Production and Welfare Division, Faculty of Biosciences and Aquaculture (FBA), Nord University, Steinkjer 7713, Norway
| |
Collapse
|
2
|
Mildenberger J, Rebours C. Green ( Ulva fenestrata) and Brown ( Saccharina latissima) Macroalgae Similarly Modulate Inflammatory Signaling by Activating NF- κB and Dampening IRF in Human Macrophage-Like Cells. J Immunol Res 2024; 2024:8121284. [PMID: 38799117 PMCID: PMC11126347 DOI: 10.1155/2024/8121284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/22/2024] [Accepted: 04/23/2024] [Indexed: 05/29/2024] Open
Abstract
Macroalgae are considered healthy food ingredients due to their content in numerous bioactive compounds, and the traditional use of whole macroalgae in Asian cuisine suggests a contribution to longevity. Although much information is available about the bioactivity of pure algal compounds, such as different polyphenols and polysaccharides, documentation of potential effects of whole macroalgae as part of Western diets is limited. Lifestyle- and age-related diseases, which have a high impact on population health, are closely connected to underlying chronic inflammation. Therefore, we have studied crude extracts of green (Ulva fenestrata) and brown (Saccharina latissima) macroalgae, as two of the most promising food macroalgae in the Nordic countries for their effect on inflammation in vitro. Human macrophage-like reporter THP-1 cells were treated with macroalgae extracts and stimulated with lipopolysaccharide (LPS) to induce inflammatory signalling. Effects of the macroalgae extracts were assessed on transcription factor activity of NF-κB and IRF as well as secretion and/or expression of the cytokines TNF-α and IFN-β and chemokines IL-8 and CXCL10. The crude macroalgae extracts were further separated into polyphenol-enriched and polysaccharide-enriched fractions, which were also tested for their effect on transcription factor activity. Interestingly, we observed a selective activation of NF-κB, when cells were treated with macroalgae extracts. On the other hand, pretreatment with macroalgae extracts selectively repressed IRF activation when inflammatory signaling was subsequently induced by LPS. This effect was consistent for both tested species as well as for polyphenol- and polysaccharide-enriched fractions, of which the latter had more pronounced effects. Overall, this is the first indication of how macroalgae could modulate inflammatory signaling by selective activation and subsequent repression of different pathways. Further in vitro and in vivo studies of this mechanism would be needed to understand how macroalgae consumption could influence the prevention of noncommunicable, lifestyle- and age-related diseases that are highly related to unbalanced inflammatory processes.
Collapse
|
3
|
Kim ST, Conklin SD, Redan BW, Ho KK. Determination of the Nutrient and Toxic Element Content of Wild-Collected and Cultivated Seaweeds from Hawai'i. ACS FOOD SCIENCE & TECHNOLOGY 2024; 4:595-605. [PMID: 38528908 PMCID: PMC10961648 DOI: 10.1021/acsfoodscitech.3c00476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
For centuries, Hawaiians have gathered seaweed for food, medicine, and ceremonial purposes. Seaweed contains nutrients, but some varieties can accumulate toxic elements. We measured target macrominerals (Na, Mg, P, K, Ca), microminerals (B, V, Mn, Co, Cu, Zn, Mo), and nonessential/toxic elements (As, Sr, Cd, Sn, Hg, Pb, and U) in a sample of wild-collected and cultivated seaweeds from Hawai'i. The samples consisted of brown (Sargassum aquifolium, Sargassum echinocarpum), red (Gracilaria parvispora, Halymenia formosa, Halymenia hawaiiana), and green (Ulva ohnoi) seaweed. Elemental composition was determined by inductively coupled plasma (ICP)-atomic emission spectroscopy and ICP-mass spectrometry (MS). Speciation of As was conducted by using liquid chromatography-ICP-MS. S. echinocarpum per 80 g serving was high in Ca (~37% daily value [DV]), U. ohnoi was high in Mg (~40%DV), H. formosa was high in Fe (~40%DV), and G. parvispora was high in Mn (~128%DV). In this study, the highest amounts of toxic elements were observed in S. aquifolium and S. echinocarpum (27.6 mg inorganic As/kg fdw), G. parvispora (43.3 mg Pb/kg fdw) and H. formosa (46.6 mg Pb/kg fdw). These results indicate that although seaweeds from Hawai'i contain a variety of nutrients, some species can accumulate high amounts of toxic elements.
Collapse
Affiliation(s)
- Samuel T. Kim
- Department of Human Nutrition, Food and Animal Sciences, University of Hawai‘i at Mānoa, Honolulu, HI, 96822, United States
| | - Sean D. Conklin
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park, MD, 20740, United States
| | - Benjamin W. Redan
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, Office of Food Safety, Bedford Park, IL, 60501, United States
| | - Kacie K.H.Y. Ho
- Department of Human Nutrition, Food and Animal Sciences, University of Hawai‘i at Mānoa, Honolulu, HI, 96822, United States
| |
Collapse
|
4
|
Lafeuille B, Tamigneaux É, Berger K, Provencher V, Beaulieu L. Variation of the Nutritional Composition and Bioactive Potential in Edible Macroalga Saccharina latissima Cultivated from Atlantic Canada Subjected to Different Growth and Processing Conditions. Foods 2023; 12:1736. [PMID: 37107531 PMCID: PMC10137355 DOI: 10.3390/foods12081736] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/12/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
Macroalgae are a new food source in the Western world. The purpose of this study was to evaluate the impact of harvest months and food processing on cultivated Saccharina latissima (S. latissima) from Quebec. Seaweeds were harvested in May and June 2019 and processed by blanching, steaming, and drying with a frozen control condition. The chemical (lipids, proteins, ash, carbohydrates, fibers) and mineral (I, K, Na, Ca, Mg, Fe) compositions, the potential bioactive compounds (alginates, fucoidans, laminarans, carotenoids, polyphenols) and in vitro antioxidant potential were investigated. The results showed that May specimens were significantly the richest in proteins, ash, I, Fe, and carotenoids, while June macroalgae contained more carbohydrates. The antioxidant potential of water-soluble extracts (Oxygen Radical Absorbance Capacity [ORAC] analysis-625 µg/mL) showed the highest potential in June samples. Interactions between harvested months and processing were demonstrated. The drying process applied in May specimens appeared to preserve more S. latissima quality, whereas blanching and steaming resulted in a leaching of minerals. Losses of carotenoids and polyphenols were observed with heating treatments. Water-soluble extracts of dried May samples showed the highest antioxidant potential (ORAC analysis) compared to other methods. Thus, the drying process used to treat S. latissima harvested in May seems to be the best that should be selected.
Collapse
Affiliation(s)
- Bétina Lafeuille
- Département de Science des Aliments, Faculté des Sciences de l’Agriculture et de l’Alimentation (FSAA), Université Laval, Québec, QC G1V 0A6, Canada;
- Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Québec, QC G1V 0A6, Canada; (É.T.); (V.P.)
- Centre Nutrition, Santé et Société (NUTRISS), Université Laval, Québec, QC G1V 0A6, Canada
| | - Éric Tamigneaux
- Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Québec, QC G1V 0A6, Canada; (É.T.); (V.P.)
- École des Pêches et de L’aquaculture du Québec, Cégep de la Gaspésie et des Îles, Québec, QC G0C 1V0, Canada
- Merinov, Grande-Rivière, QC G0C 1V0, Canada;
| | | | - Véronique Provencher
- Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Québec, QC G1V 0A6, Canada; (É.T.); (V.P.)
- Centre Nutrition, Santé et Société (NUTRISS), Université Laval, Québec, QC G1V 0A6, Canada
- École de Nutrition, Faculté des Sciences de l’Agriculture et de l’Alimentation (FSAA), Université Laval, Québec, QC G1V 0A6, Canada
| | - Lucie Beaulieu
- Département de Science des Aliments, Faculté des Sciences de l’Agriculture et de l’Alimentation (FSAA), Université Laval, Québec, QC G1V 0A6, Canada;
- Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Québec, QC G1V 0A6, Canada; (É.T.); (V.P.)
- Québec-Océan, Université Laval, Québec, QC G1V 0A6, Canada
| |
Collapse
|
5
|
Trigo JP, Stedt K, Schmidt AEM, Kollander B, Edlund U, Nylund G, Pavia H, Abdollahi M, Undeland I. Mild blanching prior to pH-shift processing of Saccharina latissima retains protein extraction yields and amino acid levels of extracts while minimizing iodine content. Food Chem 2023; 404:134576. [PMID: 36265271 DOI: 10.1016/j.foodchem.2022.134576] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 10/05/2022] [Accepted: 10/08/2022] [Indexed: 11/05/2022]
Abstract
The seaweed Saccharina latissima is often blanched to lower iodine levels, however, it is not known how blanching affects protein extraction. We assessed the effect of blanching or soaking (80/45/12 °C, 2 min) on protein yield and protein extract characteristics after pH-shift processing of S. latissima. Average protein yields and extract amino acid levels ranked treatments as follows: blanching-45 °C ∼ control > soaking ∼ blanching-80 °C. Although blanching-45 °C decreased protein solubilization yield at pH 12, it increased isoelectric protein precipitation yield at pH 2 (p < 0.05). The former could be explained by a higher ratio of large peptides/proteins in the blanched biomass as shown by HP-SEC, whereas the latter by blanching-induced lowering of ionic strength, as verified by a dialysis model. Moreover, blanching-45 °C yielded a protein extract with 49 % less iodine compared with the control extract. We recommend blanching-45 °C since it is effective at removing iodine and does not compromise total protein extraction yield.
Collapse
Affiliation(s)
- João P Trigo
- Department of Biology and Biological Engineering - Food and Nutrition Science, Chalmers University of Technology, SE 412 96 Gothenburg, Sweden.
| | - Kristoffer Stedt
- Tjärnö Marine Laboratory, Department of Marine Sciences, University of Gothenburg, Strömstad, Sweden
| | - Alina E M Schmidt
- Fibre and Polymer Technology, KTH Royal Institute of Technology, SE 100 44 Stockholm, Sweden
| | - Barbro Kollander
- Livsmedelsverket - Swedish Food Agency, Dag Hammarskjölds väg 56 A, Uppsala, Sweden
| | - Ulrica Edlund
- Fibre and Polymer Technology, KTH Royal Institute of Technology, SE 100 44 Stockholm, Sweden
| | - Göran Nylund
- Tjärnö Marine Laboratory, Department of Marine Sciences, University of Gothenburg, Strömstad, Sweden
| | - Henrik Pavia
- Tjärnö Marine Laboratory, Department of Marine Sciences, University of Gothenburg, Strömstad, Sweden
| | - Mehdi Abdollahi
- Department of Biology and Biological Engineering - Food and Nutrition Science, Chalmers University of Technology, SE 412 96 Gothenburg, Sweden
| | - Ingrid Undeland
- Department of Biology and Biological Engineering - Food and Nutrition Science, Chalmers University of Technology, SE 412 96 Gothenburg, Sweden.
| |
Collapse
|
6
|
On the use of pulsed electric field technology as a pretreatment to reduce the content of potentially toxic elements in dried Saccharina latissima. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
7
|
Assessment of Food Quality and Safety of Cultivated Macroalgae. Foods 2021; 11:foods11010083. [PMID: 35010208 PMCID: PMC8750098 DOI: 10.3390/foods11010083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 12/23/2021] [Accepted: 12/27/2021] [Indexed: 11/29/2022] Open
|
8
|
Blikra MJ, Altintzoglou T, Løvdal T, Rognså G, Skipnes D, Skåra T, Sivertsvik M, Noriega Fernández E. Seaweed products for the future: Using current tools to develop a sustainable food industry. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.11.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
9
|
Lytou AE, Schoina E, Liu Y, Michalek K, Stanley MS, Panagou EZ, Nychas GJE. Quality and Safety Assessment of Edible Seaweeds Alaria esculenta and Saccharina latissima Cultivated in Scotland. Foods 2021; 10:foods10092210. [PMID: 34574321 PMCID: PMC8472205 DOI: 10.3390/foods10092210] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/13/2021] [Accepted: 09/15/2021] [Indexed: 12/14/2022] Open
Abstract
Within Europe over the last 10 years, there has been an increase in seaweeds cultivated for human consumption. For food safety reasons, it is important to assess the microbiological and nutritional quality of the biomass. The fresh and dried edible seaweeds Alaria esculenta and Saccharina latissima were assessed over two consecutive years for the presence of microorganisms. Seaweed samples supplied from Scotland were stored under isothermal conditions for specific time intervals depending on the sample’s condition (fresh, dried or rehydrated). During storage, microbiological analyses were performed for the enumeration of Total Viable Counts (TVC), Pseudomonas spp., Enterobacteriaceae and Bacillus spp., as well as yeasts and molds. Additionally, bacterial colonies from the Marine Agar growth medium were isolated and subjected to PCR-RAPD analysis for characterization of the bacterial diversity of seaweeds. Bacterial isolates with different fingerprint patterns were further subjected to sequencing (16S rDNA, V1–V4 region). The presence of human pathogenic bacteria was also investigated. Results showed that the initial population of TVC was differentiated depending on the year of seaweed harvest, being closer to the enumeration limit (1.0 log CFU/g) in fresh samples from 2020 and higher in samples from 2019 (6.7 and 3.9 log CFU/g in A. esculenta and S. latissima, respectively). DNA-based analysis revealed the presence of Psychrobacter, Cobetia and Pseudomonas species in A. esculenta, while Psychrobacter and Micrococcus species were present in S. latissima.
Collapse
Affiliation(s)
- Anastasia E. Lytou
- Laboratory of Microbiology and Biotechnology of Foods, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, 11855 Athens, Greece; (A.E.L.); (E.S.); (E.Z.P.)
| | - Eirini Schoina
- Laboratory of Microbiology and Biotechnology of Foods, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, 11855 Athens, Greece; (A.E.L.); (E.S.); (E.Z.P.)
| | - Yunge Liu
- Department of Food Science and Engineering, Shandong Agricultural University, Tai’an 271018, China;
| | - Kati Michalek
- Scottish Association for Marine Science (SAMS), Oban PA37 1QA, UK; (K.M.); (M.S.S.)
| | - Michele S. Stanley
- Scottish Association for Marine Science (SAMS), Oban PA37 1QA, UK; (K.M.); (M.S.S.)
| | - Efstathios Z. Panagou
- Laboratory of Microbiology and Biotechnology of Foods, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, 11855 Athens, Greece; (A.E.L.); (E.S.); (E.Z.P.)
| | - George-John E. Nychas
- Laboratory of Microbiology and Biotechnology of Foods, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, 11855 Athens, Greece; (A.E.L.); (E.S.); (E.Z.P.)
- Correspondence: ; Tel.: +30-210-529-4938
| |
Collapse
|