1
|
Prasher P, Sharma M, Agarwal V, Singh SK, Gupta G, Dureja H, Dua K. Cationic cycloamylose based nucleic acid nanocarriers. Chem Biol Interact 2024; 395:111000. [PMID: 38614318 DOI: 10.1016/j.cbi.2024.111000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 04/02/2024] [Accepted: 04/07/2024] [Indexed: 04/15/2024]
Abstract
Nucleic acid delivery by viral and non-viral methods has been a cornerstone for the contemporary gene therapy aimed at correcting the defective genes, replacing of the missing genes, or downregulating the expression of anomalous genes is highly desirable for the management of various diseases. Ostensibly, it becomes paramount for the delivery vectors to intersect the biological barriers for accessing their destined site within the cellular environment. However, the lipophilic nature of biological membranes and their potential to limit the entry of large sized, charged, hydrophilic molecules thus presenting a sizeable challenge for the cellular integration of negatively charged nucleic acids. Furthermore, the susceptibility of nucleic acids towards the degrading enzymes (nucleases) in the lysosomes present in cytoplasm is another matter of concern for their cellular and nuclear delivery. Hence, there is a pressing need for the identification and development of cationic delivery systems which encapsulate the cargo nucleic acids where the charge facilitates their cellular entry by evading the membrane barriers, and the encapsulation shields them from the enzymatic attack in cytoplasm. Cycloamylose bearing a closed loop conformation presents a robust candidature in this regard owing to its remarkable encapsulating tendency towards nucleic acids including siRNA, CpG DNA, and siRNA. The presence of numerous hydroxyl groups on the cycloamylose periphery provides sites for its chemical modification for the introduction of cationic groups, including spermine, (3-Chloro-2 hydroxypropyl) trimethylammonium chloride (Q188), and diethyl aminoethane (DEAE). The resulting cationic cycloamylose possesses a remarkable transfection efficiency and provides stability to cargo oligonucleotides against endonucleases, in addition to modulating the undesirable side effects such as unwanted immune stimulation. Cycloamylose is known to interact with the cell membranes where they release certain membrane components such as phospholipids and cholesterol thereby resulting in membrane destabilization and permeabilization. Furthermore, cycloamylose derivatives also serve as formulation excipients for improving the efficiency of other gene delivery systems. This review delves into the various vector and non-vector-based gene delivery systems, their advantages, and limitations, eventually leading to the identification of cycloamylose as an ideal candidate for nucleic acid delivery. The synthesis of cationic cycloamylose is briefly discussed in each section followed by its application for specific delivery/transfection of a particular nucleic acid.
Collapse
Affiliation(s)
- Parteek Prasher
- Department of Chemistry, University of Petroleum & Energy Studies, Energy Acres, Dehradun, 248007, India.
| | - Mousmee Sharma
- Department of Chemistry, Uttaranchal University, Dehradun, 248007, India
| | - Vipul Agarwal
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India; Faculty of Health, Australian Research Center in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia; School of Medical and Life Sciences, Sunway University, 47500 Sunway City, Malaysia
| | - Gaurav Gupta
- School of Pharmacy, Graphic Era Hill University, Dehradun, 248007, India; Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman 346, United Arab Emirates
| | - Harish Dureja
- Department of Pharmaceutical Sciences, Maharishi Dayanand University, Rohtak, 124001, India
| | - Kamal Dua
- Faculty of Health, Australian Research Center in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
| |
Collapse
|
2
|
Kerienė I, Šaulienė I, Šukienė L, Judžentienė A, Ligor M, Valiuškevičius G, Grendaitė D, Buszewski B. Enrichment of Water Bodies with Phenolic Compounds Released from Betula and Pinus Pollen in Surface Water. PLANTS (BASEL, SWITZERLAND) 2023; 13:99. [PMID: 38202407 PMCID: PMC10780553 DOI: 10.3390/plants13010099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/15/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024]
Abstract
Betula and Pinus pollen, which are dispersed in natural surface waters, release biologically active compounds into the water bodies. This study aims to evaluate variations in the distribution and composition of phenolic compounds in suspended particles in natural water bodies during pollen spreading. Samples taken from water bodies of different trophic levels were analyzed by microscopy, UV/VIS spectroscopy, HPTLC, and HPLC/DAD. The study revealed that the total phenolic content in water-suspended particles varied from 3.0 mg/g to 11.0 mg/g during Betula and Pinus pollen spreading. It was also observed that the surface water of dystrophic natural lakes had a higher content of phenolic compounds than the eutrophic, hypereutrophic, and mesotrophic water bodies. Chlorogenic, trans-ferulic, vanillin, and 3,4-dihydroxybenzoic acids were frequently detected in the surface water samples. Experimental measurements have shown variations in the release of phenolic compounds from Betula pollen into water (p < 0.05). After the exhibition of pollen, the distilled water predominantly contained bioactive chlorogenic acid. Further in situ investigations are necessary to gain a more comprehensive understanding of the function of phenolic compounds in aquatic ecosystems. The exploration of the release of bioactive compounds from pollen could provide valuable insights into the potential nutritional value of pollen as a nutrient source for aquaculture.
Collapse
Affiliation(s)
- Ilona Kerienė
- Regional Development Institute, Šiauliai Academy, Vilnius University, 84 Vytauto Str., LT-76352 Šiauliai, Lithuania; (I.Š.); (L.Š.)
| | - Ingrida Šaulienė
- Regional Development Institute, Šiauliai Academy, Vilnius University, 84 Vytauto Str., LT-76352 Šiauliai, Lithuania; (I.Š.); (L.Š.)
| | - Laura Šukienė
- Regional Development Institute, Šiauliai Academy, Vilnius University, 84 Vytauto Str., LT-76352 Šiauliai, Lithuania; (I.Š.); (L.Š.)
| | - Asta Judžentienė
- Department of Organic Chemistry, Center for Physical Sciences and Technology, Saulėtekio Avenue 3, LT-10257 Vilnius, Lithuania;
| | - Magdalena Ligor
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, 7 Gagarina Str., 87-100 Torun, Poland; (M.L.); (B.B.)
| | - Gintaras Valiuškevičius
- Department of Hydrology and Climatology, Faculty of Chemistry and Geosciences, Vilnius University, M. K. Čiurlionio Str. 21, LT-03101 Vilnius, Lithuania; (G.V.); (D.G.)
| | - Dalia Grendaitė
- Department of Hydrology and Climatology, Faculty of Chemistry and Geosciences, Vilnius University, M. K. Čiurlionio Str. 21, LT-03101 Vilnius, Lithuania; (G.V.); (D.G.)
| | - Bogusław Buszewski
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, 7 Gagarina Str., 87-100 Torun, Poland; (M.L.); (B.B.)
| |
Collapse
|
3
|
Lee YR, Jeong HM, Kim JS, Kim EA, Lee EH, Shim JH. Enzymatic formation of cyclic maltooligosaccharides for the application of quercetin inclusion complex. Carbohydr Polym 2023; 310:120722. [PMID: 36925261 DOI: 10.1016/j.carbpol.2023.120722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/20/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023]
Abstract
To improve the applicability of quercetin (QCT), we produced a QCT and cycloamylose (CA-QCT) inclusion complex based on the cyclization activity of cyclodextrin glucanotransferase (CGTase; EC 2.4.1.19). The encapsulated QCT was purified using recycling preparative high-performance liquid chromatography, and its formation was analyzed using matrix-assisted laser desorption/ionization-time of flight mass spectrometry. The water solubility of CA-QCT was 55,000-fold higher than that of QCT. CA-QCT had 97 % stability for one week at pH 8 in a 4 °C water bath. According to a 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity assay, CA-QCT activity in aqueous solution was 24 times higher than that of an equal amount of QCT in aqueous solution. In an anti-inflammatory assay using lipopolysaccharide-induced RAW264.7 macrophages, CA-QCT in aqueous solution decreased nitric oxide production in a similar manner to QCT in dimethyl sulfoxide (DMSO). Additionally, even under aqueous conditions, CA-QCT more effectively inhibited the production of inflammatory mediators, such as interleukin-1β, interleukin-6, and cyclooxygenase, compared with QCT dissolved in DMSO.
Collapse
Affiliation(s)
- Ye-Rim Lee
- Department of Food Science and Nutrition, Hallym University, Hallymdaehak-gil 1, Chuncheon, Gwangwon-do 24252, Republic of Korea; The Korean Institute of Nutrition, Hallym University, Hallymdaehak-gil 1, Chuncheon, Gwangwon-do 24252, Republic of Korea
| | - Hyun-Mo Jeong
- Department of Food Science and Nutrition, Hallym University, Hallymdaehak-gil 1, Chuncheon, Gwangwon-do 24252, Republic of Korea; The Korean Institute of Nutrition, Hallym University, Hallymdaehak-gil 1, Chuncheon, Gwangwon-do 24252, Republic of Korea
| | - Ji-Soo Kim
- Department of Food Science and Nutrition, Hallym University, Hallymdaehak-gil 1, Chuncheon, Gwangwon-do 24252, Republic of Korea; The Korean Institute of Nutrition, Hallym University, Hallymdaehak-gil 1, Chuncheon, Gwangwon-do 24252, Republic of Korea
| | - Eun-A Kim
- Department of Food Science and Nutrition, Hallym University, Hallymdaehak-gil 1, Chuncheon, Gwangwon-do 24252, Republic of Korea; The Korean Institute of Nutrition, Hallym University, Hallymdaehak-gil 1, Chuncheon, Gwangwon-do 24252, Republic of Korea
| | - Eun-Hyeong Lee
- Department of Food Science and Nutrition, Hallym University, Hallymdaehak-gil 1, Chuncheon, Gwangwon-do 24252, Republic of Korea; The Korean Institute of Nutrition, Hallym University, Hallymdaehak-gil 1, Chuncheon, Gwangwon-do 24252, Republic of Korea
| | - Jae-Hoon Shim
- Department of Food Science and Nutrition, Hallym University, Hallymdaehak-gil 1, Chuncheon, Gwangwon-do 24252, Republic of Korea; The Korean Institute of Nutrition, Hallym University, Hallymdaehak-gil 1, Chuncheon, Gwangwon-do 24252, Republic of Korea.
| |
Collapse
|
4
|
Nakapong S, Tumhom S, Kaulpiboon J, Pongsawasdi P. Heterologous expression of 4α-glucanotransferase: overproduction and properties for industrial applications. World J Microbiol Biotechnol 2022; 38:36. [PMID: 34993677 DOI: 10.1007/s11274-021-03220-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 12/20/2021] [Indexed: 12/28/2022]
Abstract
4α-Glucanotransferase (4α-GTase) is unique in its ability to form cyclic oligosaccharides, some of which are of industrial importance. Generally, low amount of enzymes is produced by or isolated from their natural sources: animals, plants, and microorganisms. Heterologous expressions of these enzymes, in an attempt to increase their production for applicable uses, have been widely studied since 1980s; however, the expressions are mostly performed in the prokaryotic bacteria, mostly Escherichia coli. Site-directed mutagenesis has added more value to these expressed enzymes to display the desired properties beneficial for their applications. The search for further suitable properties for food application leads to an extended research in expression by another group of host organism, the generally-recognized as safe host including the Bacillus and the eukaryotic yeast systems. Herein, our review focuses on two types of 4α-GTase: the cyclodextrin glycosyltransferase and amylomaltase. The updated studies on the general structure and properties of the two enzymes with emphasis on heterologous expression, mutagenesis for property improvement, and their industrial applications are provided.
Collapse
Affiliation(s)
- Santhana Nakapong
- Department of Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, 10240, Thailand
| | - Suthipapun Tumhom
- Office of National Higher Education Science Research and Innovation Policy Council, Ministry of Higher Education Science Research and Innovation, Bangkok, 10330, Thailand
| | - Jarunee Kaulpiboon
- Division of Biochemistry, Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathumthani, 12120, Thailand.
| | - Piamsook Pongsawasdi
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
5
|
Leoni C, Gattulli BAR, Pesole G, Ceci LR, Volpicella M. Amylomaltases in Extremophilic Microorganisms. Biomolecules 2021; 11:biom11091335. [PMID: 34572549 PMCID: PMC8465469 DOI: 10.3390/biom11091335] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/06/2021] [Accepted: 09/08/2021] [Indexed: 11/16/2022] Open
Abstract
Amylomaltases (4-α-glucanotransferases, E.C. 2.4.1.25) are enzymes which can perform a double-step catalytic process, resulting in a transglycosylation reaction. They hydrolyse glucosidic bonds of α-1,4'-d-glucans and transfer the glucan portion with the newly available anomeric carbon to the 4'-position of an α-1,4'-d-glucan acceptor. The intramolecular reaction produces a cyclic α-1,4'-glucan. Amylomaltases can be found only in prokaryotes, where they are involved in glycogen degradation and maltose metabolism. These enzymes are being studied for possible biotechnological applications, such as the production of (i) sugar substitutes; (ii) cycloamyloses (molecules larger than cyclodextrins), which could potentially be useful as carriers and encapsulating agents for hydrophobic molecules and also as effective protein chaperons; and (iii) thermoreversible starch gels, which could be used as non-animal gelatin substitutes. Extremophilic prokaryotes have been investigated for the identification of amylomaltases to be used in the starch modifying processes, which require high temperatures or extreme conditions. The aim of this article is to present an updated overview of studies on amylomaltases from extremophilic Bacteria and Archaea, including data about their distribution, activity, potential industrial application and structure.
Collapse
Affiliation(s)
- Claudia Leoni
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, Consiglio Nazionale delle Ricerche, Via Amendola, 70126 Bari, Italy; (C.L.); (B.A.R.G.); (G.P.)
| | - Bruno A. R. Gattulli
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, Consiglio Nazionale delle Ricerche, Via Amendola, 70126 Bari, Italy; (C.L.); (B.A.R.G.); (G.P.)
| | - Graziano Pesole
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, Consiglio Nazionale delle Ricerche, Via Amendola, 70126 Bari, Italy; (C.L.); (B.A.R.G.); (G.P.)
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy
| | - Luigi R. Ceci
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, Consiglio Nazionale delle Ricerche, Via Amendola, 70126 Bari, Italy; (C.L.); (B.A.R.G.); (G.P.)
- Correspondence: (L.R.C.); (M.V.); Tel.: +39-080-544-3311 (L.R.C. & M.V.)
| | - Mariateresa Volpicella
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, Consiglio Nazionale delle Ricerche, Via Amendola, 70126 Bari, Italy; (C.L.); (B.A.R.G.); (G.P.)
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy
- Correspondence: (L.R.C.); (M.V.); Tel.: +39-080-544-3311 (L.R.C. & M.V.)
| |
Collapse
|