1
|
Akintayo OA, Falconer RJ, Lauer JC, Cowley JM, Bozkurt H. The effect of gelatinisation and enzymatic hydrolysis methods on the starch, sugar and physicochemical profiles of faba bean milk. Int J Biol Macromol 2025; 304:140898. [PMID: 39938850 DOI: 10.1016/j.ijbiomac.2025.140898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/06/2025] [Accepted: 02/09/2025] [Indexed: 02/14/2025]
Abstract
This study aimed to address challenges of colloidal instability and undesirable sensory properties associated with starch in pulse-based dairy alternatives by investigating enzymatic starch hydrolysis in faba bean milk (FBM). The effects of gelatinisation temperature (60-95 °C) and enzymatic hydrolysis methods (including single enzyme with α-amylase and a multi-enzyme blend containing α-amylase, pullulanase, protease, cellulase, xylanase and lipase) were evaluated on starch and sugar profiles, micromorphology, and rheological properties of FBM. Unhydrolysed FBM exhibited a larger median particle size (114.58 μm), while enzyme-treated samples showed a reduction in particle sizes (38.53-67.63 μm). Both enzymatic treatments resulted in an 85-92 % reduction in starch content, with glucose and maltodextrin levels remaining consistent across different gelatinisation temperatures and hydrolysis variations. Hydrolysis also enhanced colloidal stability by reducing dry sediment (9.55 %) and sedimentation rate (4.69 %/hr) by approximately 45 % and 59 %, respectively. FBM hydrolysed with the multi-enzyme blend displayed lower viscosity (0.07 Pa.s) and consistency coefficient (0.28 Pa.sn) compared to the α-amylase treated samples, likely due to additional peptide breakdown. These findings suggest that a separate pre-gelatinisation stage is not essential for an effective hydrolysis of FBM starch as gelatinisation likely occurs concurrently with enzymatic treatment at 70 °C. Both single and multi-enzyme hydrolysis methods offer promising benefits for improving the sensory properties of FBM and warrant further exploration in future studies.
Collapse
Affiliation(s)
- Olaide A Akintayo
- Discipline of Food Science, School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, Adelaide, SA 5064, Australia; Department of Home Economics and Food Science, Faculty of Agriculture, University of Ilorin, PMB, 1515 Ilorin, Nigeria.
| | - Robert J Falconer
- Department of Chemical Engineering, School of Chemical Engineering, The University of Adelaide, North Terrace, Adelaide, SA 5000, Australia.
| | - Juanita C Lauer
- Discipline of Food Science, School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, Adelaide, SA 5064, Australia.
| | - James M Cowley
- Discipline of Food Science, School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, Adelaide, SA 5064, Australia.
| | - Hayriye Bozkurt
- Discipline of Food Science, School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, Adelaide, SA 5064, Australia.
| |
Collapse
|
2
|
Fermentation for Designing Innovative Plant-Based Meat and Dairy Alternatives. Foods 2023; 12:foods12051005. [PMID: 36900522 PMCID: PMC10000644 DOI: 10.3390/foods12051005] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/13/2023] [Accepted: 02/17/2023] [Indexed: 03/02/2023] Open
Abstract
Fermentation was traditionally used all over the world, having the preservation of plant and animal foods as a primary role. Owing to the rise of dairy and meat alternatives, fermentation is booming as an effective technology to improve the sensory, nutritional, and functional profiles of the new generation of plant-based products. This article intends to review the market landscape of fermented plant-based products with a focus on dairy and meat alternatives. Fermentation contributes to improving the organoleptic properties and nutritional profile of dairy and meat alternatives. Precision fermentation provides more opportunities for plant-based meat and dairy manufacturers to deliver a meat/dairy-like experience. Seizing the opportunities that the progress of digitalization is offering would boost the production of high-value ingredients such as enzymes, fats, proteins, and vitamins. Innovative technologies such as 3D printing could be an effective post-processing solution following fermentation in order to mimic the structure and texture of conventional products.
Collapse
|
3
|
Mariscal M, Espinosa‐Ramírez J, Pérez‐Carrillo E, Santacruz A, Cervantes‐Astorga E, Serna‐Saldívar SO. Comparative lactic acid fermentation with five
Lactobacillus
strains of supernatants made of extruded and saccharified chickpea flour. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mireya Mariscal
- Tecnologico de Monterrey, School of Engineering and Sciences, Av. Eugenio Garza Sada 2501 Sur, Monterrey, Nuevo Leon Mexico 64849
| | - Johanan Espinosa‐Ramírez
- Tecnologico de Monterrey, School of Engineering and Sciences, Av. Eugenio Garza Sada 2501 Sur, Monterrey, Nuevo Leon Mexico 64849
| | - Esther Pérez‐Carrillo
- Tecnologico de Monterrey, School of Engineering and Sciences, Av. Eugenio Garza Sada 2501 Sur, Monterrey, Nuevo Leon Mexico 64849
| | - Arlette Santacruz
- Tecnologico de Monterrey, School of Engineering and Sciences, Av. Eugenio Garza Sada 2501 Sur, Monterrey, Nuevo Leon Mexico 64849
| | - Enrique Cervantes‐Astorga
- Tecnologico de Monterrey, School of Engineering and Sciences, Av. Eugenio Garza Sada 2501 Sur, Monterrey, Nuevo Leon Mexico 64849
| | - Sergio O. Serna‐Saldívar
- Tecnologico de Monterrey, School of Engineering and Sciences, Av. Eugenio Garza Sada 2501 Sur, Monterrey, Nuevo Leon Mexico 64849
| |
Collapse
|
4
|
Abstract
Legume proteins have a promising future in the food industry due to their nutritional, environmental, and economic benefits. However, their application is still limited due to the presence of antinutritional and allergenic compounds, their poor technological properties, and their unpleasant sensory characteristics. Fermentation has been traditionally applied to counteract these inconveniences. At present, lactic acid fermentation of legumes is attracting the attention of researchers and industry in relation to the development of healthier, tasty, and technologically adapted products. Hence, we aimed to review the literature to shed light on the effect of lactic acid fermentation on legume protein composition and on their nutritional, functional, technological, and sensorial properties. The antimicrobial activity of lactic acid bacteria during legume fermentation was also considered. The heterogenicity of raw material composition (flour, concentrate, and isolate), the diversity of lactic acid bacteria (nutriment requirements, metabolic pathways, and enzyme production), and the numerous possible fermenting conditions (temperature, time, oxygen, and additional nutrients) offer an impressive range of possibilities with regard to fermented legume products. Systematic studies are required in order to determine the specific roles of the different factors. The optimal selection of these criteria will allow one to obtain high-quality fermented legume products. Fermentation is an attractive technology for the development of legume-based products that are able to satisfy consumers’ expectations from a nutritional, functional, technological, and sensory point of view.
Collapse
|
5
|
Li R, Luo W, Liu Y, Chen C, Chen S, Yang J, Wu P, Lv X, Liu Z, Ni L, Han J. The investigation on the characteristic metabolites of Lactobacillus plantarum RLL68 during fermentation of beverage from by-products of black tea manufacture. Curr Res Food Sci 2022; 5:1320-1329. [PMID: 36072509 PMCID: PMC9441299 DOI: 10.1016/j.crfs.2022.07.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/11/2022] [Accepted: 07/25/2022] [Indexed: 11/28/2022] Open
Abstract
At present, lactic acid bacteria (LAB) fermentation is commonly considered as an effective strategy to remarkably drive the improvement of flavor and nutritional value, and extend shelf-life of fermented foods. In this study, the by-product of tea manufacture, including broken tea segments and tea stalk, was used to produce fermented tea beverages. In addition, the residual components of matrices and bacterial metabolites were measured, as well as the sensory quality of the beverage was evaluated. Subsequently, the determination of monosaccharides, volatile aroma profile, free amino acids, biogenic amines and organic acids, and several functional substances involving γ-aminobutyric acid (GABA), polyphenols, caffeine and L-theanine were carried out. The results revealed that glucose, fructose, mannose and xylose are principal carbon source of Lactobacillus plantarum RLL68 during the fermentation; moreover, the abundance of aromatic substances is varied dramatically and the characteristic flavors of the beverages, particularly fermentation for 48 h and 72 h, are imparted with sweet and fruity odor on the basis of initial nutty and floral odor; Meanwhile, the organoleptic qualities of fermented beverages is also enhanced. Furthermore, the levels of organic acids and GABA are elevated, while the bitter amino acids, as well as some bioactive substances including tea polyphenols and L-theanine are declined; Besides, the caffeine level almost remains constant, and quite low levels of various biogenic amines are also observed. The results of this study will provide the theoretical basis to steer and control the flavor and quality of the fermented tea beverages in the future. The dynamic variation of characteristic metabolites of the beverage was elucidated. The characteristic flavors changed from nutty and floral to sweet and fruity. L. plantarum fermentation bring both beneficial and adverse impacts.
Collapse
Affiliation(s)
- Ruili Li
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Weibo Luo
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Yifeng Liu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian Research Institute of Cereal and Oil Science and Technology, Fuzhou, 350025, China
| | - Chi Chen
- Fujian Vocational College of Agriculture, College of Modern Agricultural Engineering, Fuzhou, 350303, Fujian, China
| | - Shunxian Chen
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Jie Yang
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Peifen Wu
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Xucong Lv
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Zhibin Liu
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Li Ni
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Jinzhi Han
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
- Corresponding author.
| |
Collapse
|
6
|
Legumes and Legume-Based Beverages Fermented with Lactic Acid Bacteria as a Potential Carrier of Probiotics and Prebiotics. Microorganisms 2021; 10:microorganisms10010091. [PMID: 35056540 PMCID: PMC8779895 DOI: 10.3390/microorganisms10010091] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/20/2021] [Accepted: 12/29/2021] [Indexed: 12/21/2022] Open
Abstract
Fermentation is widely used in the processing of dairy, meat, and plant products. Due to the growing popularity of plant diets and the health benefits of consuming fermented products, there has been growing interest in the fermentation of plant products and the selection of microorganisms suitable for this process. The review provides a brief overview of lactic acid bacteria (LAB) and their use in fermentation of legumes and legume-based beverages. Its scope also extends to prebiotic ingredients present in legumes and legume-based beverages that can support the growth of LAB. Legumes are a suitable matrix for the production of plant-based beverages, which are the most popular products among dairy alternatives. Legumes and legume-based beverages have been successfully fermented with LAB. Legumes are a natural source of ingredients with prebiotic properties, including oligosaccharides, resistant starch, polyphenols, and isoflavones. These compounds provide a broad range of important physiological benefits, including anti-inflammatory and immune regulation, as well as anti-cancer properties and metabolic regulation. The properties of legumes make it possible to use them to create synbiotic food, which is a source of probiotics and prebiotics.
Collapse
|