1
|
Igartúa DE, Balcone A, Platania FA, Cabezas DM, Palazolo GG. Pea protein isolate-soluble soybean polysaccharides electrostatic assembly: effect of pH, biopolymer mass ratio and heat treatment. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:7291-7300. [PMID: 38647043 DOI: 10.1002/jsfa.13550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 04/16/2024] [Accepted: 04/22/2024] [Indexed: 04/25/2024]
Abstract
BACKGROUND In past years, thousands of protein-polysaccharide complexes have been investigated to modify protein characteristics and functionality in food systems. However, the interaction between pea protein isolate (PPI) and soluble soybean polysaccharide (SSPS) has not been thoroughly characterized yet. RESULTS In the present study, the phase behavior of PPI and SSPS mixtures was analyzed as a function of PPI:SSPS mixing ratio (1:1 to 1:0.10) and pH (7.0 to 2.0), showing that these biopolymers could be electrostatically assembled at 1:1 to 1:0.25 mixing ratios and 4.0 to 3.0 pH values. Then, the characteristics of the PPI-SSPS complexes were studied before and after heating (90 °C and 30 min) by ζ-potential, surface hydrophobicity, protein solubility, particle size distribution and physical stability for 56 days. By lowering the pH and PPI:SSPS mixing ratio, the complexes showed increased solubility, changed 𝜁-potential and higher physical stability. By heating, the complexes presented increased hydrophobicity and physical stability. CONCLUSION Overall, PPI-SSPS complexes increased the protein solubility, reduced the particle size, and changed both the ζ-potential and the surface hydrophobicity with respect to PPI control, allowing stabilization of the colloidal system and broadening the possible applications of these high-quality proteins in acidic food systems. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Daniela Edith Igartúa
- Laboratorio de Investigación en Funcionalidad y Tecnología de Alimentos (LIFTA), Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Agustina Balcone
- Laboratorio de Investigación en Funcionalidad y Tecnología de Alimentos (LIFTA), Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Buenos Aires, Argentina
| | - Fedra Agustina Platania
- Laboratorio de Investigación en Funcionalidad y Tecnología de Alimentos (LIFTA), Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Buenos Aires, Argentina
| | - Dario Marcelino Cabezas
- Laboratorio de Investigación en Funcionalidad y Tecnología de Alimentos (LIFTA), Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Gonzalo Gastón Palazolo
- Laboratorio de Investigación en Funcionalidad y Tecnología de Alimentos (LIFTA), Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
2
|
Nourmohammadi N, Campanella OH, Chen D. Effect of limited proteolysis and CaCl 2 on the rheology, microstructure and in vitro digestibility of pea protein-carboxymethyl cellulose mixed gel. Food Res Int 2024; 188:114474. [PMID: 38823865 DOI: 10.1016/j.foodres.2024.114474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 04/09/2024] [Accepted: 05/07/2024] [Indexed: 06/03/2024]
Abstract
Limited proteolysis, CaCl2 and carboxymethyl cellulose (CMC) have individually demonstrated ability to increase the gel strength of laboratory-extracted plant proteins. However, the syneresis effects of their combination on the gelling capacity of commercial plant protein remains unclear. This was investigated by measuring the rheological property, microstructure and protein-protein interactions of gels formed from Alcalase hydrolyzed or intact pea proteins in the presence of 0.1 % CMC and 0-25 mM CaCl2. Sodium dodecyl-sulfate polyacrylamide gel electrophoresis (SDS-PAGE) showed the molecular weight of pea protein in the mixture were < 15 kDa after hydrolysis. The hydrolysates showed higher intrinsic fluorescence intensity and lower surface hydrophobicity than the intact proteins. Rheology showed that the storage modulus (G') of hydrolyzed pea protein (PPH)-based gels sightly decreased compared to those of native proteins. 5-15 mM CaCl2 increased the G' for both PP and PPH-based gels and decreased the strain in the creep-recovery test. Scanning electron microscopy (SEM) showed the presence of smaller protein aggregates in the PPH-based gels compared to PP gels and the gel network became denser, and more compact and heterogenous in the presence of 15 and 25 mM CaCl2. The gel dissociation assay revealed that hydrophobic interactions and hydrogen bonds were the dominant forces to maintain the gel structure. In vitro digestion showed that the soluble protein content in PPH-based gels was 10 ∼ 30 % higher compared to those of the PP counterpart. CaCl2 addition reduced protein digestibility with a concentration dependent behavior. The results obtained show contrasting effects of limited proteolysis and CaCl2 on the gelling capacity and digestibility of commercial pea proteins. These findings offer practical guidelines for developing pea protein-based food products with a balanced texture and protein nutrition through formulation and enzymatic pre-treatment.
Collapse
Affiliation(s)
- Niloufar Nourmohammadi
- Department of Animal, Veterinary and Food Sciences, University of Idaho, 875 Perimeter Drive, Moscow, ID 83844, United States
| | - Osvaldo H Campanella
- Department of Food Science and Technology, the Ohio State University, 2015 Fyffe Rd, Columbus, OH 43210, United States
| | - Da Chen
- Department of Food Science, Purdue University, 745 Agriculture Mall Drive, West Lafayette, IN47907, United States.
| |
Collapse
|
3
|
Naik RR, Ye Q, Wang Y, Selomulya C. Assessing the effect of Maillard reaction products on the functionality and antioxidant properties of Amaranth-red seaweed blends. Food Res Int 2024; 175:113759. [PMID: 38129055 DOI: 10.1016/j.foodres.2023.113759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/05/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023]
Abstract
Plant-based proteins, represented by amaranth in our study, embrace a potential as an ingredient for the functional-food formulation. However, their efficacy is hindered by inherent limitations in solubility, emulsification, and antioxidant traits. The Maillard reaction, a complex chemical-process resulting in a diverse array of products, including Maillard conjugates and Maillard reaction products (MRPs), can employ variable effects on these specific attributes. To elucidate the influence of this reaction and the MRPs on the aforementioned properties, we used a complex blend of dehydrated seaweed Gracilaria and amaranth protein to create a conjugate-MRP blend. Our investigations revealed that the resultant incorporation enhanced solubility, emulsification, and antioxidant properties, while the intermediates formed did not progress to advanced glycation stages. This change is likely attributed to the dual effect of conjugates that altered the secondary protein structure, while the generation and/or preservation of MRPs post ultrasonication and spray drying enhanced its antioxidant potential.
Collapse
Affiliation(s)
| | - Qianyu Ye
- School of Chemical Engineering, UNSW Sydney, NSW 2052, Australia
| | - Yong Wang
- School of Chemical Engineering, UNSW Sydney, NSW 2052, Australia
| | | |
Collapse
|
4
|
Zhao Z, Chen D, Lu M, Lin J, Hou Y, Zhang Q, Li Z, Jiao L, Ye Z, Lu J. Single-Piece Membrane Supercapacitor with Exceptional Areal/Volumetric Capacitance via Double-Face Print of Electrode/Electrolyte Active Ink. SMALL METHODS 2023:e2300178. [PMID: 37129554 DOI: 10.1002/smtd.202300178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/25/2023] [Indexed: 05/03/2023]
Abstract
Single-piece flexible supercapacitors (FSCs) have light and ultrathin superiorities, thereby having great potential in portable/wearable electronics. However, all the available single-piece FSCs are fabricated by in situ growth routes, which are incompatible with large-scale technology. This work designs a carboxymethyl cellulose/phytic acid/polyaniline ink, incorporating electrode with electrolyte active compositions. Based on the electrode/electrolyte active ink, a double-face print technique on mixed cellulose ester and nylon membranes to fabricate single-piece membrane-FSCs, where both sides of membranes can be utilized well, is proposed. Consequently, one FSC is measured to be only ≈0.785 cm2 in area, ≈0.021 g in weight, and ≈200 µm in thickness, while it has exceptional areal and volumetric capacitances up to 757 mF cm-2 and 37.8 F cm-3 , respectively, based on the entire device. It also exhibits high flexibility with a capacitance retention of 98% after 2000 bend cycles from 0° to 180°. The state-of-the-art FSCs are expected to have exciting prospects in portable/wearable electronics, smart reading, and flexible displays. The preparation strategy renders the massive production of large-area and mini-size arrayed FSCs, and also the "do-it-yourself" or homemade preparation, which adds more interest and designability for general users.
Collapse
Affiliation(s)
- Zhenyun Zhao
- State Key Laboratory of Silicon Materials, Key Laboratory for Biomedical Engineering of Ministry of Education, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- Donghai Laboratory, Zhoushan, 316021, China
| | - Dongliang Chen
- State Key Laboratory of Silicon Materials, Key Laboratory for Biomedical Engineering of Ministry of Education, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Ming Lu
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400716, P. R. China
| | - Jingwen Lin
- State Key Laboratory of Silicon Materials, Key Laboratory for Biomedical Engineering of Ministry of Education, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Yang Hou
- Donghai Laboratory, Zhoushan, 316021, China
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Qinghua Zhang
- Donghai Laboratory, Zhoushan, 316021, China
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Zhongjian Li
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Lei Jiao
- Donghai Laboratory, Zhoushan, 316021, China
- Ocean College, Zhejiang University, Zhoushan, 310621, China
| | - Zhizhen Ye
- State Key Laboratory of Silicon Materials, Key Laboratory for Biomedical Engineering of Ministry of Education, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Jianguo Lu
- State Key Laboratory of Silicon Materials, Key Laboratory for Biomedical Engineering of Ministry of Education, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- Donghai Laboratory, Zhoushan, 316021, China
| |
Collapse
|
5
|
Effect of hazelnut type, hydrocolloid concentrations and ultrasound applications on physicochemical and sensory characteristics of hazelnut-based milks. Food Chem 2023; 402:134288. [DOI: 10.1016/j.foodchem.2022.134288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 08/22/2022] [Accepted: 09/13/2022] [Indexed: 11/18/2022]
|
6
|
Insights into the interaction mechanism of glutelin and rice starch during extrusion processing: The role of specific mechanical energy. Food Chem 2022; 405:134850. [DOI: 10.1016/j.foodchem.2022.134850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 11/08/2022]
|
7
|
Physicochemical properties of different pea proteins in relation to their gelation ability to form lactic acid bacteria induced yogurt gel. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
8
|
Wollschlaeger JO, Maatz R, Albrecht FB, Klatt A, Heine S, Blaeser A, Kluger PJ. Scaffolds for Cultured Meat on the Basis of Polysaccharide Hydrogels Enriched with Plant-Based Proteins. Gels 2022; 8:94. [PMID: 35200476 PMCID: PMC8871916 DOI: 10.3390/gels8020094] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/19/2022] [Accepted: 02/01/2022] [Indexed: 02/04/2023] Open
Abstract
The world population is growing and alternative ways of satisfying the increasing demand for meat are being explored, such as using animal cells for the fabrication of cultured meat. Edible biomaterials are required as supporting structures. Hence, we chose agarose, gellan and a xanthan-locust bean gum blend (XLB) as support materials with pea and soy protein additives and analyzed them regarding material properties and biocompatibility. We successfully built stable hydrogels containing up to 1% pea or soy protein. Higher amounts of protein resulted in poor handling properties and unstable gels. The gelation temperature range for agarose and gellan blends is between 23-30 °C, but for XLB blends it is above 55 °C. A change in viscosity and a decrease in the swelling behavior was observed in the polysaccharide-protein gels compared to the pure polysaccharide gels. None of the leachates of the investigated materials had cytotoxic effects on the myoblast cell line C2C12. All polysaccharide-protein blends evaluated turned out as potential candidates for cultured meat. For cell-laden gels, the gellan blends were the most suitable in terms of processing and uniform distribution of cells, followed by agarose blends, whereas no stable cell-laden gels could be formed with XLB blends.
Collapse
Affiliation(s)
- Jannis O. Wollschlaeger
- Reutlingen Research Institute, Reutlingen University, 72762 Reutlingen, Germany; (J.O.W.); (F.B.A.); (A.K.); (S.H.)
| | - Robin Maatz
- Institute for BioMedical Printing Technology, Technical University of Darmstadt, 64289 Darmstadt, Germany; (R.M.); (A.B.)
| | - Franziska B. Albrecht
- Reutlingen Research Institute, Reutlingen University, 72762 Reutlingen, Germany; (J.O.W.); (F.B.A.); (A.K.); (S.H.)
| | - Annemarie Klatt
- Reutlingen Research Institute, Reutlingen University, 72762 Reutlingen, Germany; (J.O.W.); (F.B.A.); (A.K.); (S.H.)
| | - Simon Heine
- Reutlingen Research Institute, Reutlingen University, 72762 Reutlingen, Germany; (J.O.W.); (F.B.A.); (A.K.); (S.H.)
| | - Andreas Blaeser
- Institute for BioMedical Printing Technology, Technical University of Darmstadt, 64289 Darmstadt, Germany; (R.M.); (A.B.)
- Centre for Synthetic Biology, Technical University of Darmstadt, 64289 Darmstadt, Germany
| | - Petra J. Kluger
- School of Applied Chemistry, Reutlingen University, 72762 Reutlingen, Germany
| |
Collapse
|
9
|
|