1
|
Lomelí-Ramírez MG, Reyes-Alfaro B, Martínez-Salcedo SL, González-Pérez MM, Gallardo-Sánchez MA, Landázuri-Gómez G, Vargas-Radillo JJ, Diaz-Vidal T, Torres-Rendón JG, Macias-Balleza ER, García-Enriquez S. Thermoplastic Starch Biocomposite Films Reinforced with Nanocellulose from Agave tequilana Weber var. Azul Bagasse. Polymers (Basel) 2023; 15:3793. [PMID: 37765647 PMCID: PMC10534575 DOI: 10.3390/polym15183793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/13/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
In this work, cellulose nanocrystals (CNCs), bleached cellulose nanofibers (bCNFs), and unbleached cellulose nanofibers (ubCNFs) isolated by acid hydrolysis from Agave tequilana Weber var. Azul bagasse, an agro-waste from the tequila industry, were used as reinforcements in a thermoplastic starch matrix to obtain environmentally friendly materials that can substitute contaminant polymers. A robust characterization of starting materials and biocomposites was carried out. Biocomposite mechanical, thermal, and antibacterial properties were evaluated, as well as color, crystallinity, morphology, rugosity, lateral texture, electrical conductivity, chemical identity, solubility, and water vapor permeability. Pulp fibers and nanocelluloses were analyzed via SEM, TEM, and AFM. The water vapor permeability (WVP) decreased by up to 20.69% with the presence of CNCs. The solubility decreases with the presence of CNFs and CNCs. The addition of CNCs and CNFs increased the tensile strength and Young's modulus and decreased the elongation at break. Biocomposites prepared with ubCNF showed the best tensile mechanical properties due to a better adhesion with the matrix. Images of bCNF-based biocomposites demonstrated that bCNFs are good reinforcing agents as the fibers were dispersed within the starch film and embedded within the matrix. Roughness increased with CNF content and decreased with CNC content. Films with CNCs did not show bacterial growth for Staphylococcus aureus and Escherichia coli. This study offers a new theoretical basis since it demonstrates that different proportions of bleached or unbleached nanofibers and nanocrystals can improve the properties of starch films.
Collapse
Affiliation(s)
- María Guadalupe Lomelí-Ramírez
- Department of Wood, Cellulose and Paper, University Center for Exact Sciences and Engineering, University of Guadalajara, km 15.5 at the Guadalajara-Nogales Highway, Zapopan 45220, Mexico; (M.G.L.-R.); (S.L.M.-S.); (M.M.G.-P.); (J.J.V.-R.); (J.G.T.-R.)
| | - Benjamín Reyes-Alfaro
- Department of Chemical Engineering, Michoacana University of Saint Nicholas of Hidalgo, Morelia 58030, Mexico;
| | - Silvia Lizeth Martínez-Salcedo
- Department of Wood, Cellulose and Paper, University Center for Exact Sciences and Engineering, University of Guadalajara, km 15.5 at the Guadalajara-Nogales Highway, Zapopan 45220, Mexico; (M.G.L.-R.); (S.L.M.-S.); (M.M.G.-P.); (J.J.V.-R.); (J.G.T.-R.)
| | - María Magdalena González-Pérez
- Department of Wood, Cellulose and Paper, University Center for Exact Sciences and Engineering, University of Guadalajara, km 15.5 at the Guadalajara-Nogales Highway, Zapopan 45220, Mexico; (M.G.L.-R.); (S.L.M.-S.); (M.M.G.-P.); (J.J.V.-R.); (J.G.T.-R.)
| | - Manuel Alberto Gallardo-Sánchez
- Department of Civil Engineering and Topography, University Center for Exact Sciences and Engineering, University of Guadalajara, Marcelino Garcia Barragan Street, Number 1451, Guadalajara 44430, Mexico;
| | - Gabriel Landázuri-Gómez
- Department of Chemical Engineering, University Center for Exact Sciences and Engineering, University of Guadalajara, Marcelino Garcia Barragan Street, Number 1451, Guadalajara 44430, Mexico; (G.L.-G.); (T.D.-V.)
| | - J. Jesús Vargas-Radillo
- Department of Wood, Cellulose and Paper, University Center for Exact Sciences and Engineering, University of Guadalajara, km 15.5 at the Guadalajara-Nogales Highway, Zapopan 45220, Mexico; (M.G.L.-R.); (S.L.M.-S.); (M.M.G.-P.); (J.J.V.-R.); (J.G.T.-R.)
| | - Tania Diaz-Vidal
- Department of Chemical Engineering, University Center for Exact Sciences and Engineering, University of Guadalajara, Marcelino Garcia Barragan Street, Number 1451, Guadalajara 44430, Mexico; (G.L.-G.); (T.D.-V.)
| | - José Guillermo Torres-Rendón
- Department of Wood, Cellulose and Paper, University Center for Exact Sciences and Engineering, University of Guadalajara, km 15.5 at the Guadalajara-Nogales Highway, Zapopan 45220, Mexico; (M.G.L.-R.); (S.L.M.-S.); (M.M.G.-P.); (J.J.V.-R.); (J.G.T.-R.)
| | - Emma Rebeca Macias-Balleza
- Department of Chemical Engineering, University Center for Exact Sciences and Engineering, University of Guadalajara, Marcelino Garcia Barragan Street, Number 1451, Guadalajara 44430, Mexico; (G.L.-G.); (T.D.-V.)
| | - Salvador García-Enriquez
- Department of Wood, Cellulose and Paper, University Center for Exact Sciences and Engineering, University of Guadalajara, km 15.5 at the Guadalajara-Nogales Highway, Zapopan 45220, Mexico; (M.G.L.-R.); (S.L.M.-S.); (M.M.G.-P.); (J.J.V.-R.); (J.G.T.-R.)
| |
Collapse
|
2
|
Dordevic D, Dordevic S, Abdullah FAA, Mader T, Medimorec N, Tremlova B, Kushkevych I. Edible/Biodegradable Packaging with the Addition of Spent Coffee Grounds Oil. Foods 2023; 12:2626. [PMID: 37444364 DOI: 10.3390/foods12132626] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023] Open
Abstract
BACKGROUND Following petroleum, coffee ranks as the second most extensively exchanged commodity worldwide. The definition of spent coffee ground (SCG) can be outlined as the waste generated after consuming coffee. The aims of the study are to produce edible/biodegradable packaging with the addition of spent coffee grounds (SCG) oil and to investigate how this fortification can affect chemical, textural, and solubility properties of experimentally produced films. METHODS The produced films were based on κ-carrageenan and pouring-drying techniques in petri dishes. Two types of emulsifiers were used: Tween 20 and Tween 80. The films were analyzed by antioxidant and textural analysis, and their solubility was also tested. RESULTS Edible/biodegradable packaging samples produced with the addition of SCG oil showed higher (p < 0.05) antioxidant capacity in comparison with control samples produced without the addition of SCG oil. The results of the research showed that the fortification of edible/biodegradable packaging with the addition of SCG oil changed significantly (p < 0.05) both chemical and physical properties of the films. CONCLUSIONS Based on the findings obtained, it was indicated that films manufactured utilizing SCG oil possess considerable potential to serve as an effective and promising material for active food packaging purposes.
Collapse
Affiliation(s)
- Dani Dordevic
- Department of Plant Origin Food Sciences, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Palackého tř. 1946/1, 612 42 Brno, Czech Republic
| | - Simona Dordevic
- Department of Plant Origin Food Sciences, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Palackého tř. 1946/1, 612 42 Brno, Czech Republic
| | - Fouad Ali Abdullah Abdullah
- Department of Meat Hygiene and Technology, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences, 612 42 Brno, Czech Republic
- Department of Medical Laboratory Technology, College of Health and Medical Techniques, Duhok Polytechnic University, Duhok 42001, Iraq
| | - Tamara Mader
- University North, Dr. Zarka Dolinar Square 1, 48000 Koprivnica, Croatia
| | - Nino Medimorec
- University North, Dr. Zarka Dolinar Square 1, 48000 Koprivnica, Croatia
| | - Bohuslava Tremlova
- Department of Plant Origin Food Sciences, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Palackého tř. 1946/1, 612 42 Brno, Czech Republic
| | - Ivan Kushkevych
- Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| |
Collapse
|
3
|
Grzelczyk J, Oracz J, Gałązka-Czarnecka I. Quality Assessment of Waste from Olive Oil Production and Design of Biodegradable Packaging. Foods 2022; 11:3776. [PMID: 36496585 PMCID: PMC9740201 DOI: 10.3390/foods11233776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
The use of olive pomace from olive oil production is still insufficient. The lingering olive pomace is harmful to the environment. On the other hand, the world is increasingly polluted with plastic or by-products from the production of biodegradable products. Considering these two problems, the aim of this work was to develop a mixture and create biodegradable disposable tableware characterized by high antioxidant activity. The disposable tableware was made by mixing olive pomace with teff flour or/and sorghum groats and lecithin. Baking was carried out at the temperature of 180 °C. The best variant of the mixture for the preparation of disposable tableware was olive pomace, teff flour, sorghum groats and lecithin. These vessels were the toughest, with low water absorption and had a high antioxidant potential due to the high content of polyphenols and omega acids. Protecting the cups and bowls with beeswax had a positive effect on reducing water absorption.
Collapse
Affiliation(s)
- Joanna Grzelczyk
- Institute of Food Technology and Analysis, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, 90-537 Lodz, Poland
| | | | | |
Collapse
|
4
|
Kamaruddin ZH, Jumaidin R, Ilyas RA, Selamat MZ, Alamjuri RH, Yusof FAM. Influence of Alkali Treatment on the Mechanical, Thermal, Water Absorption, and Biodegradation Properties of Cymbopogan citratus Fiber-Reinforced, Thermoplastic Cassava Starch-Palm Wax Composites. Polymers (Basel) 2022; 14:polym14142769. [PMID: 35890548 PMCID: PMC9321355 DOI: 10.3390/polym14142769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 11/30/2022] Open
Abstract
In this study, thermoplastic cassava starch–palm wax blends, reinforced with the treated Cymbopogan citratus fiber (TPCS/ PW/ CCF) were successfully developed. The TPCS were priorly modified with palm wax to enhance the properties of the matrix. The aim of this study was to investigate the influence of alkali treatments on the TPCS/PW/CCF biocomposite. The fiber was treated with different sodium hydroxide (NaOH) concentrations (3%, 6%, and 9%) prior to the composite preparation via hot pressing. The obtained results revealed improved mechanical characteristics in the treated composites. The composites that underwent consecutive alkali treatments at 6% NaOH prior to the composite preparation had higher mechanical strengths, compared to the untreated fibers. A differential scanning calorimetry (DSC) and a thermogravimetric analysis (TGA) indicated that adding treated fibers into the TPCS matrix improved the thermal stability of the samples. The scanning electron microscopy (SEM) demonstrated an improved fiber–matrix adhesion due to the surface modification. An increment in the glass transition temperature (Tg) of the composites after undergoing NaOH treatment denoted an improved interfacial interaction in the treated samples. The Fourier transform infrared spectroscopy (FTIR) showed the elimination of hemicellulose at wavelength 1717 cm−1, for the composites treated with 6% NaOH. The water absorption, solubility, and thickness swelling revealed a higher water resistance of the composites following the alkali treatment of the fiber. These findings validated that the alkaline treatment of CCF is able to improve the functionality of the Cymbopogan citratus fiber-reinforced composites.
Collapse
Affiliation(s)
- Zatil Hafila Kamaruddin
- Fakulti Kejuruteraan Mekanikal, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, Durian Tunggal 76100, Malaysia; (Z.H.K.); (M.Z.S.)
- German-Malaysian Institute, Jalan Ilmiah Taman Universiti, Kajang 43000, Malaysia
| | - Ridhwan Jumaidin
- Fakulti Teknologi Kejuruteraan Mekanikal dan Pembuatan, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, Durian Tunggal 76100, Malaysia
- Correspondence: (R.J.); (R.H.A.)
| | - Rushdan Ahmad Ilyas
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia;
- Centre for Advanced Composite Materials (CACM), Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia
| | - Mohd Zulkefli Selamat
- Fakulti Kejuruteraan Mekanikal, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, Durian Tunggal 76100, Malaysia; (Z.H.K.); (M.Z.S.)
| | - Roziela Hanim Alamjuri
- Faculty of Tropical Forestry, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Malaysia
- Correspondence: (R.J.); (R.H.A.)
| | - Fahmi Asyadi Md Yusof
- Malaysian Institute of Chemical and Bioengineering Technology, Universiti Kuala Lumpur, Alor Gajah 78000, Malaysia;
| |
Collapse
|
5
|
Visco A, Scolaro C, Facchin M, Brahimi S, Belhamdi H, Gatto V, Beghetto V. Agri-Food Wastes for Bioplastics: European Prospective on Possible Applications in Their Second Life for a Circular Economy. Polymers (Basel) 2022; 14:2752. [PMID: 35808796 PMCID: PMC9268966 DOI: 10.3390/polym14132752] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/22/2022] [Accepted: 06/28/2022] [Indexed: 02/08/2023] Open
Abstract
Agri-food wastes (such as brewer's spent grain, olive pomace, residual pulp from fruit juice production, etc.) are produced annually in very high quantities posing a serious problem, both environmentally and economically. These wastes can be used as secondary starting materials to produce value-added goods within the principles of the circular economy. In this context, this review focuses on the use of agri-food wastes either to produce building blocks for bioplastics manufacturing or biofillers to be mixed with other bioplastics. The pros and cons of the literature analysis have been highlighted, together with the main aspects related to the production of bioplastics, their use and recycling. The high number of European Union (EU)-funded projects for the valorisation of agri-food waste with the best European practices for this industrial sector confirm a growing interest in safeguarding our planet from environmental pollution. However, problems such as the correct labelling and separation of bioplastics from fossil ones remain open and to be optimised, with the possibility of reuse before final composting and selective recovery of biomass.
Collapse
Affiliation(s)
- Annamaria Visco
- Department of Engineering, University of Messina, C.da Di Dio, 98166 Messina, Italy; (C.S.); (S.B.); (H.B.)
- Institute for Polymers, Composites and Biomaterials-CNR IPCB, Via Paolo Gaifami 18, 95126 Catania, Italy
| | - Cristina Scolaro
- Department of Engineering, University of Messina, C.da Di Dio, 98166 Messina, Italy; (C.S.); (S.B.); (H.B.)
| | - Manuela Facchin
- Department of Molecular Sciences and Nanosystems, University Ca’ Foscari of Venice, Via Torino 155, 30172 Mestre, Italy;
| | - Salim Brahimi
- Department of Engineering, University of Messina, C.da Di Dio, 98166 Messina, Italy; (C.S.); (S.B.); (H.B.)
| | - Hossem Belhamdi
- Department of Engineering, University of Messina, C.da Di Dio, 98166 Messina, Italy; (C.S.); (S.B.); (H.B.)
| | - Vanessa Gatto
- Crossing S.r.l., Viale della Repubblica 193/b, 31100 Treviso, Italy;
| | - Valentina Beghetto
- Department of Molecular Sciences and Nanosystems, University Ca’ Foscari of Venice, Via Torino 155, 30172 Mestre, Italy;
- Crossing S.r.l., Viale della Repubblica 193/b, 31100 Treviso, Italy;
| |
Collapse
|
6
|
Savino I, Campanale C, Trotti P, Massarelli C, Corriero G, Uricchio VF. Effects and Impacts of Different Oxidative Digestion Treatments on Virgin and Aged Microplastic Particles. Polymers (Basel) 2022; 14:polym14101958. [PMID: 35631840 PMCID: PMC9146394 DOI: 10.3390/polym14101958] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/05/2022] [Accepted: 05/09/2022] [Indexed: 02/04/2023] Open
Abstract
Although several sample preparation methods for analyzing microplastics (MPs) in environmental matrices have been implemented in recent years, important uncertainties and criticalities in the approaches adopted still persist. Preliminary purification of samples, based on oxidative digestion, is an important phase to isolate microplastics from the environmental matrix; it should guarantee both efficacy and minimal damage to the particles. In this context, our study aims to evaluate Fenton’s reaction digestion pre-treatment used to isolate and extract microplastics from environmental matrices. We evaluated the particle recovery efficiency and the impact of the oxidation method on the integrity of the MPs subjected to digestion considering different particles’ polymeric composition, size, and morphology. For this purpose, two laboratory experiments were set up: the first one to evaluate the efficacy of various digestion protocols in the MPs extraction from a complex matrix, and the second one to assess the possible harm of different treatments, differing in temperatures and volume reagents used, on virgin and aged MPs. Morphological, physicochemical, and dimensional changes were verified by Scanning Electron Microscope (SEM) and Fourier Transformed Infrared (FTIR) spectroscopy. The findings of the first experiment showed the greatest difference in recovery rates especially for polyvinyl chloride and polyethylene terephthalate particles, indicating the role of temperature and the kind of polymer as the major factors influencing MPs extraction. In the second experiment, the SEM analysis revealed morphological and particle size alterations of various entities, in particular for the particles treated at 75 °C and with major evident alterations of aged MPs to virgin ones. In conclusion, this study highlights how several factors, including temperature and polymer, influence the integrity of the particles altering the quality of the final data.
Collapse
Affiliation(s)
- Ilaria Savino
- Italian National Council of Research, Water Research Institute, 70132 Bari, Italy; (I.S.); (C.M.); (V.F.U.)
- Department of Biology, University of Bari Aldo Moro, 70121 Bari, Italy;
| | - Claudia Campanale
- Italian National Council of Research, Water Research Institute, 70132 Bari, Italy; (I.S.); (C.M.); (V.F.U.)
- Correspondence:
| | - Pasquale Trotti
- Sezione di Entomologia e Zoologia Agraria, Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, University of Bari Aldo Moro, 70121 Bari, Italy;
| | - Carmine Massarelli
- Italian National Council of Research, Water Research Institute, 70132 Bari, Italy; (I.S.); (C.M.); (V.F.U.)
| | - Giuseppe Corriero
- Department of Biology, University of Bari Aldo Moro, 70121 Bari, Italy;
| | - Vito Felice Uricchio
- Italian National Council of Research, Water Research Institute, 70132 Bari, Italy; (I.S.); (C.M.); (V.F.U.)
| |
Collapse
|
7
|
Cella C, La Spina R, Mehn D, Fumagalli F, Ceccone G, Valsesia A, Gilliland D. Detecting Micro- and Nanoplastics Released from Food Packaging: Challenges and Analytical Strategies. Polymers (Basel) 2022; 14:1238. [PMID: 35335568 PMCID: PMC8954753 DOI: 10.3390/polym14061238] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/11/2022] [Accepted: 03/16/2022] [Indexed: 11/16/2022] Open
Abstract
Micro- and nanoplastic (pMP and pNP, respectively) release is an emerging issue since these particles constitute a ubiquitous and growing pollutant, which not only threatens the environment but may have potential consequences for human health. In particular, there is concern about the release of secondary pMP and pNP from the degradation of plastic consumer products. The phenomenon is well-documented in relation to plastic waste in the environment but, more recently, reports of pMP generated even during the normal use of plastic food contact materials, such as water bottles, tea bags, and containers, have been published. So far, a validated and harmonized strategy to tackle the issue is not available. In this study, we demonstrate that plastic breakdown to pMP and pNP can occur during the normal use of polyethylene (PE) rice cooking bags and ice-cube bags as well as of nylon teabags. A multi-instrumental approach based on Raman microscopy, X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and particular attention on the importance of sample preparation were applied to evaluate the chemical nature of the released material and their morphology. In addition, a simple method based on Fourier transform infrared (FT-IR) spectroscopy is proposed for pNP mass quantification, resulting in the release of 1.13 ± 0.07 mg of nylon 6 from each teabag. However, temperature was shown to have a strong impact on the morphology and aggregation status of the released materials, posing to scientists and legislators a challenging question: are they micro- or nanoplastics or something else altogether?
Collapse
Affiliation(s)
| | | | | | | | | | | | - Douglas Gilliland
- European Commission, Joint Research Centre (JRC), Ispra, Italy; (C.C.); (R.L.S.); (D.M.); (F.F.); (G.C.); (A.V.)
| |
Collapse
|
8
|
Senthilkumaran A, Babaei-Ghazvini A, Nickerson MT, Acharya B. Comparison of Protein Content, Availability, and Different Properties of Plant Protein Sources with Their Application in Packaging. Polymers (Basel) 2022; 14:polym14051065. [PMID: 35267887 PMCID: PMC8915110 DOI: 10.3390/polym14051065] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/20/2022] [Accepted: 02/25/2022] [Indexed: 12/20/2022] Open
Abstract
Plant-based proteins are considered to be one of the most promising biodegradable polymers for green packaging materials. Despite this, the practical application of the proteins in the packaging industry on a large scale has yet to be achieved. In the following review, most of the data about plant protein-based packaging materials are presented in two parts. Firstly, the crude protein content of oilseed cakes and meals, cereals, legumes, vegetable waste, fruit waste, and cover crops are indexed, along with the top global producers. In the second part, we present the different production techniques (casting, extrusion, and molding), as well as compositional parameters for the production of bioplastics from the best protein sources including sesame, mung, lentil, pea, soy, peanut, rapeseed, wheat, corn, amaranth, sunflower, rice, sorghum, and cottonseed. The inclusion of these protein sources in packaging applications is also evaluated based on their various properties such as barrier, thermal, and mechanical properties, solubility, surface hydrophobicity, water uptake capacity, and advantages. Having this information could assist the readers in exercising judgement regarding the right source when approving the applications of these proteins as biodegradable packaging material.
Collapse
Affiliation(s)
- Anupriya Senthilkumaran
- Department of Chemical and Biological Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada; (A.S.); (A.B.-G.)
| | - Amin Babaei-Ghazvini
- Department of Chemical and Biological Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada; (A.S.); (A.B.-G.)
| | - Michael T. Nickerson
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada;
| | - Bishnu Acharya
- Department of Chemical and Biological Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada; (A.S.); (A.B.-G.)
- Correspondence:
| |
Collapse
|
9
|
Properties Enhancement Nano Coconut Shell Filled in Packaging Plastic Waste Bionanocomposite. Polymers (Basel) 2022; 14:polym14040772. [PMID: 35215684 PMCID: PMC8874970 DOI: 10.3390/polym14040772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 01/12/2023] Open
Abstract
Plastic waste recycling has been proposed as a long-term solution to eliminate land and marine deposit. This study proposed a new approach to fabricate biocomposites of nano-sized fillers and low matrix compositions with a great performance by using plastic packaging waste different from the conventional biocomposite. Coconut shell, an agricultural waste, wasbonded with waste plastic to form a biocomposite with a coupling agent. The optimum percentage composition and the effect of coconut shell ball milling time on the properties of the biocomposite were studied with density, thickness swelling, porosity flexural strength, flexural modulus, compressive strength, thermogravimetric analysis, differential scanning calorimetry, scanning electron microscope (SEM), and atomic force microscopy (AFM). The results showed that the optimum performance of biocomposite was obtained at 30/70 (wt.%) plastic waste to coconut shell ratio, where 70 wt.% was the highest coconut shell composition that can be achieved. Furthermore, for 30 wt.% of polypropylene (low matrix), the performance of biocomposite improved significantly with milling time due to enhanced interaction between filler and matrix. As the milling time was increased from 0 to 40 h, the density increased from 0.9 to 1.02 g/cm3; thickness swelling decreased from 3.4 to 1.8%; porosity decreased from 7.0 to 3.0%; flexural strength increased from 8.19 to 12.26 MPa; flexural modulus increased from 1.67 to 2.87 GPa, and compressive strength increased from 16.00 to 27.20 MPa. The degradation temperature of biocomposite also increased as the milling duration increased from 0 to 40 h. The melting temperature increased significantly from 160 to 170 °C as the milling duration increased from 0 to 40 h. The depolymerisation occurred at 350 °C, which also increased with milling duration. This study revealed that the performance of biocomposite improved significantly with a lower percentage matrix and fillernanoparticle rather than increasing the percentage of the matrix. The nanocomposite can be used as a panelboard in industrial applications.
Collapse
|
10
|
Thermoplastic Starch-Based Blends with Improved Thermal and Thermomechanical Properties. Polymers (Basel) 2021; 13:polym13234263. [PMID: 34883765 PMCID: PMC8659879 DOI: 10.3390/polym13234263] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/21/2021] [Accepted: 10/25/2021] [Indexed: 11/30/2022] Open
Abstract
This research focused on the development of biomaterials based on cassava starch and corn starch and on the effect of the incorporation of polycaprolactone (PCL) on the thermal and thermomechanical properties of the blends. The results indicated partial compatibility in the blends, especially with cassava starch at a content of 20 wt% as reflected by the maintenance of tensile strength and elongation. In addition, the changes in the crystal quality of PCL and the displacement of the absorption bands of the carbonyl groups of PCL in the infrared (989–1000 cm−1), attributed to the formation of hydrogen bonds between these groups and the hydroxyl groups of starches, were also associated with compatibility. It was observed that the crystallinity of PLC in the presence of cassava and corn starch was 38% and 62%, respectively; a crystallinity greater than that of PCL was related to an improved nucleation at the interface. Based on these properties, the blends are expected to be functional for the manufacture of short-term use products by conventional thermoplastic processing methods.
Collapse
|
11
|
Disposable Food Packaging and Serving Materials-Trends and Biodegradability. Polymers (Basel) 2021; 13:polym13203606. [PMID: 34685364 PMCID: PMC8537343 DOI: 10.3390/polym13203606] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/11/2021] [Accepted: 10/14/2021] [Indexed: 12/24/2022] Open
Abstract
Food is an integral part of everyone’s life. Disposable food serving utensils and tableware are a very convenient solution, especially when the possibility of the use of traditional dishes and cutlery is limited (e.g., takeaway meals). As a result, a whole range of products is available on the market: plates, trays, spoons, forks, knives, cups, straws, and more. Both the form of the product (adapted to the distribution and sales system) as well as its ecological aspect (biodegradability and life cycle) should be of interest to producers and consumers, especially considering the clearly growing trend of “eco-awareness”. This is particularly important in the case of single-use products. The aim of the study was to present the current trends regarding disposable utensils intended for contact with food in the context of their biodegradability. This paper has summarized not only conventional polymers but also their modern alternatives gaining the attention of manufacturers and consumers of single-use products (SUPs).
Collapse
|
12
|
Fabrication: Mechanical Testing and Structural Simulation of Regenerated Cellulose Fabric Elium ® Thermoplastic Composite System. Polymers (Basel) 2021; 13:polym13172969. [PMID: 34503009 PMCID: PMC8434310 DOI: 10.3390/polym13172969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/27/2021] [Accepted: 08/29/2021] [Indexed: 11/29/2022] Open
Abstract
Regenerated cellulose fibres are an important part of the forest industry, and they can be used in the form of fabrics as reinforcement materials. Similar to the natural fibres (NFs), such as flax, hemp and jute, that are widely used in the automotive industry, these fibres possess good potential to be used for semi-structural applications. In this work, the mechanical properties of regenerated cellulose fabric-reinforced poly methyl methacrylate (PMMA) (Elium®) composite were investigated and compared with those of its natural fibre composite counterparts. The developed composite demonstrated higher tensile strength and ductility, as well as comparable flexural properties with those of NF-reinforced epoxy and Elium® composite systems, whereas the Young’s modulus was lower. The glass transition temperature demonstrated a value competitive (107.7 °C) with that of other NF composites. Then, the behavior of the bio-composite under bending and loading was simulated, and a materials model was used to simulate the behavior of a car door panel in a flexural scenario. Modelling can contribute to predicting the structural behavior of the bio-based thermoplastic composite for secondary applications, which is the aim of this work. Finite element simulations were performed to assess the deflection and force transfer mechanism for the car door interior.
Collapse
|