1
|
Zhang Z, Li F, Zhang Z, Muhmood A, Li S, Liu M, Zhou S, Du Z, Ruan C, Sun J. Microcapsule Techniques to Emphasize Functional Plant Oil Quality and Their Applications in the Food Industry: A Review. Foods 2025; 14:677. [PMID: 40002120 PMCID: PMC11854101 DOI: 10.3390/foods14040677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/10/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025] Open
Abstract
Natural functional plant oils (FPOs) have been widely exploited due to their abundant biological activities. However, when exposed to oxygen, light, moisture, and heat, some limitations such as oxidative deterioration, impaired flavor, loss of nutritional value and volatile compounds, and decreased shelf life hinder the widespread application of FPOs in the food industry. Notably, the microencapsulation technique is one of the advanced technologies, which has been used to maintain the biological and physicochemical properties of FPOs. The present review provided a comprehensive overview of the nutrient compositions and functionality of FPOs, preparation techniques for microcapsules, and applications of microencapsulated FPOs (MFPOs) in the food industry. FPOs obtained from a wide range of sources were abundant in bioactive compounds and possessed disease risk mitigation and improved human health properties. The preparation methods of microencapsulation technology included physical, chemical, and physicochemical methods, which had the ability to enhance oxidative stability, functional, shelf life, and thermostability properties of FPOs. In this context, MFPOs had been applied as a fortification in sausage, meat, bakery, and flour products. Overall, this work will provide information for academic fields and industries the further exploration of food and nutriment products.
Collapse
Affiliation(s)
- Zhiran Zhang
- College of Life Sciences, Qingdao University, Qingdao 266071, China; (Z.Z.); (F.L.); (Z.Z.); (S.L.); (M.L.); (S.Z.)
| | - Fei Li
- College of Life Sciences, Qingdao University, Qingdao 266071, China; (Z.Z.); (F.L.); (Z.Z.); (S.L.); (M.L.); (S.Z.)
- Shandong Luhua Group Co., Ltd., Laiyang 265200, China;
| | - Ziyan Zhang
- College of Life Sciences, Qingdao University, Qingdao 266071, China; (Z.Z.); (F.L.); (Z.Z.); (S.L.); (M.L.); (S.Z.)
| | - Atif Muhmood
- Department of Agroecology, Aarhus University, 8000 Aarhus, Denmark;
| | - Shengxin Li
- College of Life Sciences, Qingdao University, Qingdao 266071, China; (Z.Z.); (F.L.); (Z.Z.); (S.L.); (M.L.); (S.Z.)
| | - Mengkai Liu
- College of Life Sciences, Qingdao University, Qingdao 266071, China; (Z.Z.); (F.L.); (Z.Z.); (S.L.); (M.L.); (S.Z.)
| | - Sen Zhou
- College of Life Sciences, Qingdao University, Qingdao 266071, China; (Z.Z.); (F.L.); (Z.Z.); (S.L.); (M.L.); (S.Z.)
| | - Zubo Du
- Shandong Luhua Group Co., Ltd., Laiyang 265200, China;
| | | | - Jie Sun
- College of Life Sciences, Qingdao University, Qingdao 266071, China; (Z.Z.); (F.L.); (Z.Z.); (S.L.); (M.L.); (S.Z.)
| |
Collapse
|
2
|
Estevinho BN, López-Rubio A. Recent Advances in Encapsulation for Food Applications. Foods 2024; 13:579. [PMID: 38397556 PMCID: PMC10888041 DOI: 10.3390/foods13040579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
Food-related research is closely related to health [...].
Collapse
Affiliation(s)
- Berta Nogueiro Estevinho
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Departamento de Engenharia Química, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Amparo López-Rubio
- Food Safety and Preservation Department, CSIC—Consejo Superior de Investigaciones Científicas, Instituto de Agroquimica y Tecnologia de los Alimentos (IATA), 46980 Paterna, Valencia, Spain
| |
Collapse
|
3
|
Zhong W, Li D, Li L, Yu S, Pang J, Zhi Z, Wu C. pH-responsive Pickering emulsion containing citrus essential oil stabilized by zwitterionically charged chitin nanofibers: Physicochemical properties and antimicrobial activity. Food Chem 2024; 433:137388. [PMID: 37688825 DOI: 10.1016/j.foodchem.2023.137388] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 08/18/2023] [Accepted: 08/31/2023] [Indexed: 09/11/2023]
Abstract
In this study, zwitterionic chitin nanofibers (Z-ChNFs) were used to prepare Pickering emulsions containing citrus essential oils (CEO) and their physicochemical properties and antimicrobial activity were investigated. Results show that as-prepared Pickering emulsions exert pH-reversible properties, pH can adjust the charge of Z-ChNFs to influence the stability of the emulsion. As the concentration of Z-ChNFs increase, the droplet size of the emulsion decreases. The high concentration of Z-ChNFs (1.5 wt%) can enhance the viscosity and promote forming nano-network structures within continuous phases, and their amphiphilic nature can strengthen the capacity for adsorption on the oil/water interface, resulting in enhanced physical stability of the encapsulated CEO emulsion. Additionally, Z-ChNFs have positive effects on the improvement of antimicrobial activity of CEO. This study provides valuable implications for the development and application of essential oils as biopreservation in the food field.
Collapse
Affiliation(s)
- Weiquan Zhong
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Danjie Li
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Liang Li
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Shan Yu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Jie Pang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| | - Zijian Zhi
- Food Structure and Function (FSF) Research Group, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Gent, Belgium.
| | - Chunhua Wu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| |
Collapse
|
4
|
Bao H, Xue Y, Zhang Y, Tu F, Wang R, Cao Y, Lin Y. Encapsulated Essential Oils Improve the Growth Performance of Meat Ducks by Enhancing Intestinal Morphology, Barrier Function, Antioxidant Capacity and the Cecal Microbiota. Antioxidants (Basel) 2023; 12:antiox12020253. [PMID: 36829812 PMCID: PMC9952412 DOI: 10.3390/antiox12020253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 01/26/2023] Open
Abstract
The objective of this study was to evaluate the effects of encapsulated essential oils (EOs) on the gut microbiota, growth performance, intestinal morphology, antioxidant properties and barrier function of meat-type ducks. A total of 320 male Cherry Valley ducks (1 day old), were randomly assigned to four dietary experimental groups with eight replicates of ten ducks each. The groups consisted of the CON group (basal diet), the HEO group (basal diet + EO 1000 mg/kg), the LEO group (basal diet + EO 500 mg/kg), and the ANT group (basal diet + chlortetracycline 50 mg/kg). Our findings indicated that ducks fed with EO 1000 mg/kg had greater average daily feed intake (ADFI), average daily gain (ADG), and body weight (BW) and a lower feed conversion ratio (FCR) than the other groups. The serum concentration of TG reduced in the HEO (p > 0.05) and LEO (p < 0.05) groups on day 42, while the concentration of CHOL increased with the EO concentration in the LEO (p > 0.05) and HEO (p < 0.05) groups. No differences were observed in the ileal mucosa for the activities of SOD, MPO and GSH-PX after EO dietary treatment. Dietary supplementation with EOs significantly increased the villus heights (p < 0.01) and the ratio of villus height to crypt depth (c/v) in the duodenum and jejunum of ducks. Moreover, the mRNA expressions of Claudin1 and Occludin in the jejunal mucosa were observed to be higher in the LEO and HEO groups rather than the CON and ANT groups on d 42. The α diversity showed that the HEO group improved the bacterial diversity and abundance. The β diversity analysis indicated that the microbial structures of the four groups were obviously separated. EO dietary supplementation could increase the relative abundance (p < 0.01) of the Bacteroidetes phylum, Bacteroidaceae family, and Bacteroides, Desulfovibrio, Phascolarctobacterium, and Butyricimonas genera in the cecal microbiota of ducks. We demonstrated significant differences in the bacterial composition and functional potential of the gut microbiota in ducks that were fed either an EO diet or a basal diet. Therefore, supplemented EOs was found to have a positive effect on the growth performance and intestinal health of ducks, which was attributed to the improvement in cecal microbiota, intestinal morphology, and barrier function.
Collapse
Affiliation(s)
- Hongduo Bao
- Institute of Food Safety and Nutrition, Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Yongqiang Xue
- CALID Biotechnology (Wuhan) Co., Ltd., Wuhan 430073, China
| | - Yingying Zhang
- Institute of Food Safety and Nutrition, Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Feng Tu
- Institute of Animal Sciences, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Ran Wang
- Institute of Food Safety and Nutrition, Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Yu Cao
- CALID Biotechnology (Wuhan) Co., Ltd., Wuhan 430073, China
- Correspondence: (Y.C.); (Y.L.)
| | - Yong Lin
- Institute of Agricultural Facilities and Equipment, The Agriculture Ministry Key Laboratory of Agricultural Engineering in the Middle and Lower Reaches of Yangtze River, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Correspondence: (Y.C.); (Y.L.)
| |
Collapse
|
5
|
Cai Q, Zhang Y, Fang X, Lin S, He Z, Peng S, Liu W. Improving Anti-listeria Activity of Thymol Emulsions by Adding Lauric Acid. Front Nutr 2022; 9:859293. [PMID: 35464037 PMCID: PMC9024332 DOI: 10.3389/fnut.2022.859293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
In this study, a novel emulsion, thymol (Thy) and lauric acid (LA) emulsion (Thy/LA-Emulsion) was prepared by homogenizing eutectic solvent (Thy/LA mixture) and caseinate solution. The effects of different thymol and lauric acid mass ratio on the formation, stability, and antibacterial activity of emulsions were studied. Compared with thymol alone, adding lauric acid (25, 50, and 75%) could enhance the antibacterial efficacy of the emulsions. Among them, Thy/LA25%-Emulsion could be stored at room temperature for a month without the increase of particle size, indicating that the addition of LA had not impacted the stability of emulsions. Meanwhile, Thy/LA25%-Emulsion exhibited a greater inhibition zone (3.06 ± 0.12 cm) and required a lower concentration (0.125 mg/mL) to completely inhibit the growth of Listeria monocytogenes. Consequently, Thy/LA25%-Emulsion demonstrated the best antibacterial activity and physicochemical stability due to its long-term storage stability. Our results suggest that Thy/LA25%-Emulsion may become a more functional natural antibacterial agent with greater commercial potential owing to its cheaper raw materials, simpler production processes, and better antibacterial effect in the food industry.
Collapse
Affiliation(s)
- Qizhen Cai
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Yun Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Xiaofeng Fang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Suyun Lin
- Jiangxi Key Laboratory of Natural Products and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, China
- *Correspondence: Suyun Lin,
| | - Zhirong He
- Jiangxi Danxia Biol Technol Co., Ltd., Yingtan, China
| | - Shengfeng Peng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Wei Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, China
- Wei Liu,
| |
Collapse
|