1
|
Harlina PW, Maritha V, Yang X, Dixon R, Muchtaridi M, Shahzad R, Nur'Isma EA. Exploring oxylipins in processed foods: Understanding mechanisms, analytical perspectives, and enhancing quality with lipidomics. Heliyon 2024; 10:e35917. [PMID: 39247353 PMCID: PMC11379580 DOI: 10.1016/j.heliyon.2024.e35917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 09/10/2024] Open
Abstract
Oxylipins are active lipid compounds formed through the oxidation of unsaturated fatty acids. These compounds have drawn considerable attention due to the potential impact on human health and processed food quality. Therefore, this study aimed to deepen current understanding and assess recent analytical advancements regarding the physiological roles of oxylipins in processed food products using lipidomics. The mechanisms behind oxylipins production in processed foods were extensively investigated, underscoring potential associations with chronic diseases. This indicates the need for innovative strategies to mitigate harmful oxylipins levels to enhance the safety and shelf life of processed food products. The results showed that mitigation methods, including the use of antioxidants and optimization of processing parameters, reduced oxylipins levels. The integration of lipidomics with food safety and quality control processes is evident in cutting-edge methods such as nuclear magnetic resonance and mass spectrometry for compliance and real-time evaluation. Aside from envisioning the future trajectory of food science and industry through prospective studies on oxylipins and processed foods, the results also provide the basis for future investigations, innovation, and advancements in the dynamic field of food science and technology.
Collapse
Affiliation(s)
- Putri Widyanti Harlina
- Department of Food Industrial Technology, Faculty of Agro-Industrial Technology, Universitas Padjadjaran, 45363, Bandung, Indonesia
| | - Vevi Maritha
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, 45363, Bandung, Indonesia
- Pharmacy Study Program, Faculty of Health and Science, Universitas PGRI Madiun, Indonesia
| | - Xiang Yang
- Department of Animal Science, University of California Davis, California, 95616, United States
| | - Roy Dixon
- Department of Chemistry, California State University, Sacramento, CA, 95819, United States
| | - Muchtaridi Muchtaridi
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, 45363, Bandung, Indonesia
| | - Raheel Shahzad
- Research Center for Genetic Engineering, National Research and Innovation Agency (BRIN), Indonesia
| | - Ernisa Adha Nur'Isma
- Department of Food Industrial Technology, Faculty of Agro-Industrial Technology, Universitas Padjadjaran, 45363, Bandung, Indonesia
| |
Collapse
|
2
|
Leopold J, Prabutzki P, Engel KM, Schiller J. From Oxidized Fatty Acids to Dimeric Species: In Vivo Relevance, Generation and Methods of Analysis. Molecules 2023; 28:7850. [PMID: 38067577 PMCID: PMC10708296 DOI: 10.3390/molecules28237850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/24/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
The occurrence of free fatty acids (FFAs) and the generation of reactive oxygen species (ROS) such as hydroxyl radicals (HO●) or hypochlorous acid (HOCl) is characteristic of inflammatory diseases, for instance, rheumatoid arthritis. Unsaturated fatty acids react with ROS yielding a variety of important products such as peroxides and chlorohydrins as primary and chain-shortened compounds (e.g., aldehydes and carboxylic acids) as secondary products. These modified fatty acids are either released from phospholipids by phospholipases or oxidatively modified subsequent to their release. There is increasing evidence that oligomeric products are also generated upon these processes. Fatty acid esters of hydroxy fatty acids (FAHFAs) are considered as very important products, but chlorinated compounds may be converted into dimeric and (with smaller yields) oligomeric products, as well. Our review is structured as follows: first, the different types of FFA oligomers known so far and the mechanisms of their putative generation are explained. Industrially relevant products as well as compounds generated from the frying of vegetable oils are also discussed. Second, the different opinions on whether dimeric fatty acids are considered as "friends" or "foes" are discussed.
Collapse
Affiliation(s)
- Jenny Leopold
- Institute for Medical Physics and Biophysics, Faculty of Medicine, Leipzig University, Härtelstr. 16-18, D-04107 Leipzig, Germany; (P.P.); (K.M.E.); (J.S.)
| | | | | | | |
Collapse
|