1
|
Dibakoane SR, Da Silva LS, Meiring B, Anyasi TA, Mlambo V, Wokadala OC. The multifactorial phenomenon of enzymatic hydrolysis resistance in unripe banana flour and its starch: A concise review. J Food Sci 2024; 89:5185-5204. [PMID: 39150760 DOI: 10.1111/1750-3841.17270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 07/06/2024] [Accepted: 07/09/2024] [Indexed: 08/17/2024]
Abstract
Unripe banana flour starch possesses a high degree of resistance to enzymatic hydrolysis, a unique and desirable property that could be exploited in the development of functional food products to regulate blood sugar levels and promote digestive health. However, due to a multifactorial phenomenon in the banana flour matrix-from the molecular to the micro level-there is no consensus regarding the complex mechanisms behind the slow enzymatic hydrolysis of unripe banana flour starch. This work therefore explores factors that influence the enzymatic hydrolysis resistance of raw and modified banana flour and its starch including the proportion and distribution of the amorphous and crystalline phases of the starch granules; granule morphology; amylose-amylopectin ratio; as well as the presence of nonstarch components such as proteins, lipids, and phenolic compounds. Our findings revealed that the relative contributions of these factors to banana starch hydrolytic resistance are apparently dependent on the native or processed state of the starch as well as the cultivar type. The interrelatability of these factors in ensuring amylolytic resistance of unripe banana flour starch was further highlighted as another reason for the multifactorial phenomenon. Knowledge of these factors and their contributions to enzymatic hydrolysis resistance individually and interconnectedly will provide insights into enhanced ways of extraction, processing, and utilization of unripe banana flour and its starch.
Collapse
Affiliation(s)
- Siphosethu R Dibakoane
- School of Agricultural and Natural Sciences, University of Mpumalanga, Nelspruit, South Africa
- Agro-Processing and Postharvest Technologies Division, Agricultural Research Council - Tropical and Subtropical Crops, Nelspruit, South Africa
| | - Laura Suzanne Da Silva
- Department of Biotechnology and Food Technology, Tshwane University of Technology, Pretoria, South Africa
| | - Belinda Meiring
- Department of Biotechnology and Food Technology, Tshwane University of Technology, Pretoria, South Africa
| | - Tonna A Anyasi
- Agro-Processing and Postharvest Technologies Division, Agricultural Research Council - Tropical and Subtropical Crops, Nelspruit, South Africa
- Food and Markets Department, Natural Resources Institute, University of Greenwich, Chatham Maritime, UK
| | - Victor Mlambo
- School of Agricultural and Natural Sciences, University of Mpumalanga, Nelspruit, South Africa
| | - Obiro Cuthbert Wokadala
- School of Agricultural and Natural Sciences, University of Mpumalanga, Nelspruit, South Africa
| |
Collapse
|
2
|
Holguín Posso AM, Macías Silva JC, Castañeda Niño JP, Mina Hernandez JH, Fajardo Cabrera de Lima LDP. Characterization and Implementation of Cocoa Pod Husk as a Reinforcing Agent to Obtain Thermoplastic Starches and Bio-Based Composite Materials. Polymers (Basel) 2024; 16:1608. [PMID: 38891558 PMCID: PMC11174894 DOI: 10.3390/polym16111608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/15/2024] [Accepted: 05/18/2024] [Indexed: 06/21/2024] Open
Abstract
When the cocoa pod husk (CPH) is used and processed, two types of flour were obtained and can be differentiated by particle size, fine flour (FFCH), and coarse flour (CFCH) and can be used as a possible reinforcement for the development of bio-based composite materials. Each flour was obtained from chopping, drying by forced convection, milling by blades, and sieving using the 100 mesh/bottom according to the Tyler series. Their physicochemical, thermal, and structural characterization made it possible to identify the lower presence of lignin and higher proportions of cellulose and pectin in FFCH. Based on the properties identified in FFCH, it was included in the processing of thermoplastic starch (TPS) from the plantain pulp (Musa paradisiaca) and its respective bio-based composite material using plantain peel short fiber (PPSF) as a reinforcing agent using the following sequence of processing techniques: extrusion, internal mixing, and compression molding. The influence of FFCH contributed to the increase in ultimate tensile strength (7.59 MPa) and higher matrix-reinforcement interaction when obtaining the freshly processed composite material (day 0) when compared to the bio-based composite material with higher FCP content (30%) in the absence of FFCH. As for the disadvantages of FFCH, reduced thermal stability (323.57 to 300.47 °C) and losses in ultimate tensile strength (0.73 MPa) and modulus of elasticity (142.53 to 26.17 MPa) during storage progress were identified. In the case of TPS, the strengthening action of FFCH was not evident. Finally, the use of CFCH was not considered for the elaboration of the bio-based composite material because it reached a higher lignin content than FFCH, which was expected to decrease its affinity with the TPS matrix, resulting in lower mechanical properties in the material.
Collapse
Affiliation(s)
- Andrés Mauricio Holguín Posso
- Escuela de Ingeniería de Materiales, Grupo Materiales Compuestos, Universidad del Valle, Calle 13 No. 100-00, Cali 76001, Colombia; (A.M.H.P.); (J.C.M.S.); (J.P.C.N.)
| | - Juan Carlos Macías Silva
- Escuela de Ingeniería de Materiales, Grupo Materiales Compuestos, Universidad del Valle, Calle 13 No. 100-00, Cali 76001, Colombia; (A.M.H.P.); (J.C.M.S.); (J.P.C.N.)
| | - Juan Pablo Castañeda Niño
- Escuela de Ingeniería de Materiales, Grupo Materiales Compuestos, Universidad del Valle, Calle 13 No. 100-00, Cali 76001, Colombia; (A.M.H.P.); (J.C.M.S.); (J.P.C.N.)
| | - Jose Herminsul Mina Hernandez
- Escuela de Ingeniería de Materiales, Grupo Materiales Compuestos, Universidad del Valle, Calle 13 No. 100-00, Cali 76001, Colombia; (A.M.H.P.); (J.C.M.S.); (J.P.C.N.)
| | - Lety del Pilar Fajardo Cabrera de Lima
- Grupo Tribología, Polímeros, Metalurgia de Polvos y Transformaciones de Residuos Sólidos, Universidad del Valle, Calle 13 No. 100-00, Cali 76001, Colombia;
| |
Collapse
|
3
|
Munir H, Alam H, Nadeem MT, Almalki RS, Arshad MS, Suleria HAR. Green banana resistant starch: A promising potential as functional ingredient against certain maladies. Food Sci Nutr 2024; 12:3787-3805. [PMID: 38873476 PMCID: PMC11167165 DOI: 10.1002/fsn3.4063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 02/14/2024] [Accepted: 02/21/2024] [Indexed: 06/15/2024] Open
Abstract
This review covers the significance of green banana resistant starch (RS), a substantial polysaccharide. The food industry has taken an interest in green banana flour due to its 30% availability of resistant starch and its approximately 70% starch content on a dry basis, making its use suitable for food formulations where starch serves as the base. A variety of processing techniques, such as heat-moisture, autoclaving, microwaving, high hydrostatic pressure, extrusion, ultrasound, acid hydrolysis, and enzymatic debranching treatments, have made significant advancements in the preparation of resistant starch. These advancements aim to change the structure, techno-functionality, and subsequently the physiological functions of the resistant starch. Green bananas make up the highest RS as compared to other foods and cereals. Many food processing industries and cuisines now have a positive awareness due to the functional characteristics of green bananas, such as their pasting, thermal, gelatinization, foaming, and textural characteristics. It is also found useful for controlling the rates of cancer, obesity, and diabetic disorders. Moreover, the use of GBRS as prebiotics and probiotics might be significantly proved good for gut health. This study aimed at the awareness of the composition, extraction and application of the green banana resistant starch in the future food products.
Collapse
Affiliation(s)
- Haroon Munir
- Department of Food Science, Faculty of Life SciencesGovernment College University FaisalabadFaisalabadPakistan
| | - Hamza Alam
- Department of Food Science, Faculty of Life SciencesGovernment College University FaisalabadFaisalabadPakistan
| | - Muhammad Tahir Nadeem
- Department of Food Science, Faculty of Life SciencesGovernment College University FaisalabadFaisalabadPakistan
| | - Riyadh S. Almalki
- Department of Pharmacology and Toxicology, Faculty of PharmacyUmm AL‐Qura UniversityMakkahSaudi Arabia
| | - Muhammad Sajid Arshad
- Department of Food Science, Faculty of Life SciencesGovernment College University FaisalabadFaisalabadPakistan
- Department of Agriculture and Food SystemsThe University of MelbourneMelbourneVictoriaAustralia
| | | |
Collapse
|
4
|
Leeward BO, Alemawor F, Deku G. Nutritional and Sensory Evaluation of Yoghurt Incorporated with Unripe False Horn Plantain ( Musa paradisiaca var. "apentu"). INTERNATIONAL JOURNAL OF FOOD SCIENCE 2023; 2023:2221302. [PMID: 38130936 PMCID: PMC10735717 DOI: 10.1155/2023/2221302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 11/07/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023]
Abstract
Unripe plantain (Musa paradisiaca L.) is rich in nutrients including minerals, vitamin C, and carbohydrates particularly resistant starches with prebiotic properties. However, the fruit is challenged with limited utilisation, and this contributes to its high postharvest losses along the production and supply chain. Information is lacking on incorporating plantain (UPF) in functional dairy food product development. In a completely randomized design, the study evaluated the effect of unripe false horn plantain (var. "apentu") flour (UPF) incorporation (w/v), at 0% (control), 2%, 4%, and 6%, on the composition and sensory quality of yoghurt. The results showed that higher UPF percent incorporation resulted in yoghurts having lower moisture and higher total solid values as well as enhanced nutritional values, in terms of protein, zinc, potassium, calcium, and vitamin C (P < 0.05). Mean pH and total titratable acidity values of the yoghurt products were in the ranges of 3.40-3.65 and 1.00-130%, respectively. Conversely, an increase in UPF incorporation generally reduced consumer likeness scores for yoghurt sensory characteristics including appearance, texture, flavour, taste, aftertaste, and overall acceptability. The control AZ product received the highest ratings in all sensory attributes evaluated. Compared with the control AZ, the BX (2% w/w UPF) yoghurt showed better nutritional quality as well as had comparable ratings for the sensory attributes, particularly in terms of appearance, texture, and flavour. Thus, the formulation containing 2% UPF has the best potential for the production of value-added functional yoghurt, which will be acceptable. However, for high acceptability, further research is needed to improve the impact of UPF incorporation on the overall sensory quality of yoghurt. The study suggests that UPF can serve as a potential supplement for improving the value of yoghurt, and this also contributes to reducing postharvest losses of plantain as a key food security resource. Also, the study findings contribute baseline information to guide future research on functional dairy product development with unripe plantain.
Collapse
Affiliation(s)
- Bernadine Olivia Leeward
- Department of Food Science and Technology, Faculty of Biosciences, College of Science, Kwame Nkrumah University of Science and Technology (KNUST), Ghana
| | - Francis Alemawor
- Department of Food Science and Technology, Faculty of Biosciences, College of Science, Kwame Nkrumah University of Science and Technology (KNUST), Ghana
| | - Godwin Deku
- Dairy/Beef Cattle Research Station, Department of Animal Science, C.A.N.R., Kwame Nkrumah University of Science and Technology (KNUST), Ghana
| |
Collapse
|
5
|
Tuárez-García DA, Galván-Gámez H, Erazo Solórzano CY, Edison Zambrano C, Rodríguez-Solana R, Pereira-Caro G, Sánchez-Parra M, Moreno-Rojas JM, Ordóñez-Díaz JL. Effects of Different Heating Treatments on the Antioxidant Activity and Phenolic Compounds of Ecuadorian Red Dacca Banana. PLANTS (BASEL, SWITZERLAND) 2023; 12:2780. [PMID: 37570934 PMCID: PMC10420799 DOI: 10.3390/plants12152780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/20/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023]
Abstract
The banana is a tropical fruit characterized by its composition of healthy and nutritional compounds. This fruit is part of traditional Ecuadorian gastronomy, being consumed in a wide variety of ways. In this context, unripe Red Dacca banana samples and those submitted to different traditional Ecuadorian heating treatments (boiling, roasting, and baking) were evaluated to profile their phenolic content by ultra-high-performance liquid chromatography coupled to high-resolution mass spectrometry (UHPLC-HRMS) and the antioxidant activity by ORAC, ABTS, and DPPH assays. A total of sixty-eight phenolic compounds were identified or tentatively identified in raw banana and treated samples, highlighting the content in flavonoids (flavan-3-ols with 88.33% and flavonols with 3.24%) followed by the hydroxybenzoic acid family (5.44%) in raw banana samples. The total phenolic compound content significantly decreased for all the elaborations evaluated, specifically from 442.12 mg/100 g DW in fresh bananas to 338.60 mg/100 g DW in boiled (23.41%), 243.63 mg/100 g DW in roasted (44.90%), and 109.85 mg/100 g DW in baked samples (75.15%). Flavan-3-ols and flavonols were the phenolic groups most affected by the heating treatments, while flavanones and hydroxybenzoic acids showed higher stability against the heating treatments, especially the boiled and roasted samples. In general, the decrease in phenolic compounds corresponded with a decline in antioxidant activity, evaluated by different methods, especially in baked samples. The results obtained from PCA studies confirmed that the impact of heating on the composition of some phenolic compounds was different depending on the technique used. In general, the heating processes applied to the banana samples induced phytochemical modifications. Even so, they remain an important source of bioactive compounds for consumers.
Collapse
Affiliation(s)
- Diego Armando Tuárez-García
- Faculty of Industry and Production Sciences, State Technical University of Quevedo, Av. Walter Andrade, km 1.5 Via Santo Domingo, Quevedo 120301, Ecuador; (D.A.T.-G.); (C.Y.E.S.)
| | - Hugo Galván-Gámez
- Department of Agrifood Industry and Food Quality, Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Alameda del Obispo, Avda Menéndez Pidal s/n, 14004 Córdoba, Spain; (H.G.-G.); (R.R.-S.); (G.P.-C.); (M.S.-P.)
| | - Cyntia Yadira Erazo Solórzano
- Faculty of Industry and Production Sciences, State Technical University of Quevedo, Av. Walter Andrade, km 1.5 Via Santo Domingo, Quevedo 120301, Ecuador; (D.A.T.-G.); (C.Y.E.S.)
| | - Carlos Edison Zambrano
- Faculty of Business Sciences, State Technical University of Quevedo, Av. Walter Andrade, km 1.5 Via Santo Domingo, C.P. 73, Quevedo 120301, Ecuador;
| | - Raquel Rodríguez-Solana
- Department of Agrifood Industry and Food Quality, Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Alameda del Obispo, Avda Menéndez Pidal s/n, 14004 Córdoba, Spain; (H.G.-G.); (R.R.-S.); (G.P.-C.); (M.S.-P.)
- MED—Mediterranean Institute for Agriculture, Environment and Development & CHANGE—Global Change and Sustainability Institute, Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Gema Pereira-Caro
- Department of Agrifood Industry and Food Quality, Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Alameda del Obispo, Avda Menéndez Pidal s/n, 14004 Córdoba, Spain; (H.G.-G.); (R.R.-S.); (G.P.-C.); (M.S.-P.)
- Foods for Health Group, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), 14004 Córdoba, Spain
| | - Mónica Sánchez-Parra
- Department of Agrifood Industry and Food Quality, Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Alameda del Obispo, Avda Menéndez Pidal s/n, 14004 Córdoba, Spain; (H.G.-G.); (R.R.-S.); (G.P.-C.); (M.S.-P.)
| | - José M. Moreno-Rojas
- Department of Agrifood Industry and Food Quality, Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Alameda del Obispo, Avda Menéndez Pidal s/n, 14004 Córdoba, Spain; (H.G.-G.); (R.R.-S.); (G.P.-C.); (M.S.-P.)
- Foods for Health Group, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), 14004 Córdoba, Spain
| | - José L. Ordóñez-Díaz
- Department of Agrifood Industry and Food Quality, Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Alameda del Obispo, Avda Menéndez Pidal s/n, 14004 Córdoba, Spain; (H.G.-G.); (R.R.-S.); (G.P.-C.); (M.S.-P.)
| |
Collapse
|
6
|
Udomkun P, Masso C, Swennen R, Romuli S, Innawong B, Fotso Kuate A, Akin‐Idowu PE, Alakonya A, Vanlauwe B. Comparative study of physicochemical, nutritional, phytochemical, and sensory properties of bread with plantain and soy flours partly replacing wheat flour. Food Sci Nutr 2022; 10:3085-3097. [PMID: 36171793 PMCID: PMC9469869 DOI: 10.1002/fsn3.2907] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 04/10/2022] [Accepted: 04/12/2022] [Indexed: 11/12/2022] Open
Abstract
Plantain flour (PLF) and soy flour (SF) were used to substitute wheat flour (10% and 20% w/w) in composite bread. Physicochemical, phytochemical, and sensory properties were investigated. Partial substitution by PLF significantly increased (p < .05) starch, amylose, ascorbic acid, and potassium content in bread samples. In contrast, a significant improvement (p < .05) in protein, fat, amylopectin, and calcium content was observed with SF substitution. Composite bread with PLF and SF together lowered the hydrolysis index (HI) and glycemic index (GI) as compared with whole wheat flour. The molar phytate to minerals (iron, zinc, and calcium) ratio in all composite loaves was lower than reported critical values, except for phytate to iron. Significant differences (p < .05) were found in color, specific volume, and texture characteristics of loaves made from partial substitution with PLF and SF. Sensory evaluation revealed that bread with 10% PLF exhibited better scores for appearance and willingness to pay than the control. In contrast, SF negatively affected (p < .05) the appearance, texture, color, overall acceptance, and willingness to pay. The trade-off analysis indicated that PLF can be utilized to produce bread that meets consumers' demands, while incorporating SF as an alternative high-nutrient density bread will be beneficial to health.
Collapse
Affiliation(s)
| | - Cargele Masso
- International Institute of Tropical Agriculture (IITA)YaoundéCameroon
| | - Rony Swennen
- International Institute of Tropical Agriculture (IITA)KampalaUganda
- Department of BiosystemsKU LeuvenHeverleeBelgium
| | - Sebastian Romuli
- Institute of Agricultural Engineering, Tropics and Subtropics GroupUniversity of HohenheimStuttgartGermany
| | - Bhundit Innawong
- Department of Food TechnologyFaculty of Engineering and Industrial TechnologySilpakorn UniversityNakhon PathomThailand
| | | | | | - Amos Alakonya
- International Maize and Wheat Improvement Center (CIMMYT)TexcocoMexico
| | - Bernard Vanlauwe
- International Institute of Tropical Agriculture (IITA)NairobiKenya
| |
Collapse
|