1
|
Bessetti RN, Cobb M, Lilley RM, Johnson NZ, Perez DA, Koonce VM, McCoy K, Litwa KA. Sulforaphane protects developing neural networks from VPA-induced synaptic alterations. Mol Psychiatry 2025:10.1038/s41380-025-02967-5. [PMID: 40175519 DOI: 10.1038/s41380-025-02967-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 02/13/2025] [Accepted: 03/20/2025] [Indexed: 04/04/2025]
Abstract
Prenatal brain development is particularly sensitive to chemicals that can disrupt synapse formation and cause neurodevelopmental disorders. In most cases, such chemicals increase cellular oxidative stress. For example, prenatal exposure to the anti-epileptic drug valproic acid (VPA), induces oxidative stress and synaptic alterations, promoting autism spectrum disorders (ASD) in humans and autism-like behaviors in rodents. Using VPA to model chemically induced ASD, we tested whether activation of cellular mechanisms that increase antioxidant gene expression would be sufficient to prevent VPA-induced synaptic alterations. As a master regulator of cellular defense pathways, the transcription factor nuclear factor erythroid 2-related factor 2 (NRF2) promotes expression of detoxification enzymes and antioxidant gene products. To increase NRF2 activity, we used the phytochemical and potent NRF2 activator, sulforaphane (SFN). In our models of human neurodevelopment, SFN activated NRF2, increasing expression of antioxidant genes and preventing oxidative stress. SFN also enhanced expression of genes associated with synapse formation. Consistent with these gene expression profiles, SFN protected developing neural networks from VPA-induced reductions in synapse formation. Furthermore, in mouse cortical neurons, SFN rescued VPA-induced reductions in neural activity. These results demonstrate the ability of SFN to protect developing neural networks during the vulnerable period of synapse formation, while also identifying molecular signatures of SFN-mediated neuroprotection that could be relevant for combatting other environmental toxicants.
Collapse
Affiliation(s)
- Riley N Bessetti
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University (ECU), Greenville, NC, USA
- East Carolina Diabetes and Obesity Institute at ECU, Greenville, NC, USA
| | - Michelle Cobb
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University (ECU), Greenville, NC, USA
- East Carolina Diabetes and Obesity Institute at ECU, Greenville, NC, USA
| | - Rosario M Lilley
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University (ECU), Greenville, NC, USA
- East Carolina Diabetes and Obesity Institute at ECU, Greenville, NC, USA
| | - Noah Z Johnson
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University (ECU), Greenville, NC, USA
- East Carolina Diabetes and Obesity Institute at ECU, Greenville, NC, USA
| | - Daisy A Perez
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University (ECU), Greenville, NC, USA
- East Carolina Diabetes and Obesity Institute at ECU, Greenville, NC, USA
| | - Virginia M Koonce
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University (ECU), Greenville, NC, USA
| | | | - Karen A Litwa
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University (ECU), Greenville, NC, USA.
- East Carolina Diabetes and Obesity Institute at ECU, Greenville, NC, USA.
| |
Collapse
|
2
|
Zhang G, Wen F, Li Y, Sun P, Li Y, Hu Z, Wang H, Ma Y, Liang G, Chen L, Yang K, Hu J. Sulforaphane acts through the NFE2L2/AMPK signaling pathway to protect boar spermatozoa from cryoinjury by activating antioxidant defenses. Theriogenology 2024; 230:330-340. [PMID: 39369625 DOI: 10.1016/j.theriogenology.2024.09.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 10/08/2024]
Abstract
During cryopreservation, a substantial portion of spermatozoa undergoes apoptosis due to cryoinjury, resulting in decreased fertility. Boar spermatozoa are highly sensitive to temperature, with low temperature triggering reactive oxygen species (ROS) generation, leading to oxidative stress and apoptosis. Sulforaphane (SFN), a potent natural compound found in cruciferous vegetables, is efficacious in mitigating oxidative stress. We here supplemented different SFN concentrations (0, 1.25, 2.5, 5, 10, and 20 μM) into the freezing extender to explore its effect on boar sperm during cryopreservation and determine the optimal SFN concentration. Supplementation of 5 μM SFN exhibited the highest sperm motility, motion performance, plasma membrane integrity, acrosome integrity, and antioxidant properties (total antioxidant capacity (T-AOC) and antioxidant enzyme activity) after freezing and thawing. Then, RT group, C group and C + SFN group were established to explore the effect of SFN on the cryopreservation-induced sperm apoptosis level and fertilizing capacity of post-thawed sperms. SFN effectively rescued the apoptosis and fertilizing capacity of post-thawed sperms. Mechanistically, SFN activated the redox-sensitive nuclear factor erythroid 2-related factor 2 (NRF2/NFE2L2) by promoting adenosine monophosphate-activated protein kinase (AMPK) phosphorylation. This activation improved antioxidant defenses, ultimately improving cryoinjury in boar spermatozoa. In summary, SFN suppressed cryopreservation-induced apoptosis of spermatozoa by activating antioxidant defenses and the AMPK/NFE2L2 signaling pathway. These findings suggest a novel approach for augmenting the cryoprotective efficiency and spermatozoa fertility after cryopreservation.
Collapse
Affiliation(s)
- Guangzhi Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Fei Wen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yu Li
- Key Laboratory for Efficient Ruminant Breeding Technology of Higher Education Institutions in Shaanxi Province, The Youth Innovation Team of Shaanxi Universities, Zhang Yong Academician Animal Biotechnology Engineering Center, Yangling Vocational & Technical College, Yangling, 712100, Shaanxi, China
| | - Pingyu Sun
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yang Li
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zhangtao Hu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Hui Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China; College of Animal Science, Xinjiang Agricultural University, Urumqi, 830052, Xinjiang Uygur Autonomous Region, China
| | - Yunhui Ma
- Dali County Zhongkang Livestock Breeding Co., Ltd., Dali County, 715100, Shanxi, China
| | - Guodong Liang
- Dali County Zhongkang Livestock Breeding Co., Ltd., Dali County, 715100, Shanxi, China
| | - Lin Chen
- Dali County Zhongkang Livestock Breeding Co., Ltd., Dali County, 715100, Shanxi, China
| | - Ke Yang
- Dali County Zhongkang Livestock Breeding Co., Ltd., Dali County, 715100, Shanxi, China
| | - Jianhong Hu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
3
|
Zhang Y, Zhang W, Zhao Y, Peng R, Zhang Z, Xu Z, Simal-Gandara J, Yang H, Deng J. Bioactive sulforaphane from cruciferous vegetables: advances in biosynthesis, metabolism, bioavailability, delivery, health benefits, and applications. Crit Rev Food Sci Nutr 2024; 65:3027-3047. [PMID: 38841734 DOI: 10.1080/10408398.2024.2354937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Chronic inflammation-induced diseases (CID) are the dominant cause of death worldwide, contributing to over half of all global deaths. Sulforaphane (SFN) derived from cruciferous vegetables has been extensively studied for its multiple functional benefits in alleviating CID. This work comprehensively reviewed the biosynthesis, metabolism, bioavailability, delivery, health benefits, and applications of SFN and its potential mechanisms against CID (e.g., cancer, obesity, type 2 diabetes, et al.), and neurological disorders based on a decade of research. SFN exerts its biological functions through the hydrolysis of glucosinolates by gut microbiota, and exhibits rapid metabolism and excretion characteristics via metabolization of mercapturic acid pathway. Microencapsulation is an important way to improve the stability and targeted delivery of SFN. The health benefits of SNF against CID are attributed to the multiple regulatory mechanisms including modulating oxidative stress, inflammation, apoptosis, immune response, and intestinal homeostasis. The clinical applications of SFN and related formulations show promising potential; however, further exploration is required regarding the sources, dosages, toxicity profiles, and stability of SFN. Together, SFN is a natural product with great potential for development and application, which is crucial for the development of functional food and pharmaceutical industries.
Collapse
Affiliation(s)
- Yanli Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wenyuan Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yaqi Zhao
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Renjie Peng
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhanquan Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhenzhen Xu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-food Safety and Quality, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo, Ourense, Spain
| | - Haixia Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Jianjun Deng
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
4
|
Men X, Han X, Oh G, Im JH, Lim JS, Cho GH, Choi SI, Lee OH. Plant sources, extraction techniques, analytical methods, bioactivity, and bioavailability of sulforaphane: a review. Food Sci Biotechnol 2024; 33:539-556. [PMID: 38274178 PMCID: PMC10805900 DOI: 10.1007/s10068-023-01434-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/06/2023] [Accepted: 09/10/2023] [Indexed: 01/27/2024] Open
Abstract
Sulforaphane (SFN) is an isothiocyanate commonly found in cruciferous vegetables. It is formed via the enzymatic hydrolysis of glucoraphanin by myrosinase. SFN exerts various biological effects, including anti-cancer, anti-oxidation, anti-obesity, and anti-inflammatory effects, and is widely used in functional foods and clinical medicine. However, the structure of SFN is unstable and easily degradable, and its production is easily affected by temperature, pH, and enzyme activity, which limit its application. Hence, several studies are investigating its physicochemical properties, stability, and biological activity to identify methods to increase its content. This article provides a comprehensive review of the plant sources, extraction and analysis techniques, in vitro and in vivo biological activities, and bioavailability of SFN. This article highlights the importance and provides a reference for the research and application of SFN in the future.
Collapse
Affiliation(s)
- Xiao Men
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon, 24341 Republic of Korea
| | - Xionggao Han
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon, 24341 Republic of Korea
| | - Geon Oh
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon, 24341 Republic of Korea
| | - Ji-Hyun Im
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon, 24341 Republic of Korea
| | - June seok Lim
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon, 24341 Republic of Korea
| | - Geun hee Cho
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon, 24341 Republic of Korea
| | - Sun-Il Choi
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon, 24341 Republic of Korea
| | - Ok-Hwan Lee
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon, 24341 Republic of Korea
| |
Collapse
|
5
|
Alshehri AA, Hamed YS, Kamel RM, Shawir SMS, Sakr H, Ali M, Ammar A, Saleh MN, El Fadly E, Salama MA, Abdin M. Enhanced physical properties, antioxidant and antibacterial activity of bio-composite films composed from carboxymethyl cellulose and polyvinyl alcohol incorporated with broccoli sprout seed extract for butter packaging. Int J Biol Macromol 2024; 255:128346. [PMID: 37995780 DOI: 10.1016/j.ijbiomac.2023.128346] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/18/2023] [Accepted: 11/20/2023] [Indexed: 11/25/2023]
Abstract
This study investigated the development of biodegradable films made from a combination of carboxymethyl cellulose (CMC), Polyvinyl alcohol (PVA), and purified extract of broccoli sprout seed (BSSE). The films were characterized for their color, physical properties, surface morphology, crystallinity, mechanical properties, and thermal properties. The addition of BSSE up to 1.4 % to the film matrix imparted opaque color and increased opacity up to 3.652. The films also became less moisture-absorbent 8.21 %, soluble 19.16 %, and permeable to water vapor 1.531 (× 10-10 g.m-1 s-1 pa-1). By utilizing 0.7 % from BSSE inside films, the surface of the films became smoother but became rough with higher concentrations 2.1 % of BSSE. Fourier transform infrared (FT-IR) analysis showed that there was physical interaction between the BSSE extract and the PV/CM matrix. The films showed good thermal stability, and the incorporation of BSSE improved their ability to preserve the acidity, TBARS, peroxide value, and total color differences of butter during cold storage.
Collapse
Affiliation(s)
- Azizah A Alshehri
- Department of Home Economic, College of Home Economic, King Khalid University, Abha, Saudi Arabia
| | - Yahya S Hamed
- Food Technology Department, Faculty of Agriculture, Suez Canal University, Ismailia 41522, Egypt
| | - Reham M Kamel
- Agricultural Engineering Research Institute, Agricultural Research Center, Giza 12611, Egypt
| | - Samar M S Shawir
- Home Economics Department, Faculty of Specific Education, Alexandria University, Alexandria, Egypt
| | - Hazem Sakr
- Department of Food Technology, Faculty of Agriculture, Kafrelsheikh University, Egypt; Agricultural Research Center, Food Technology Research Institute, Giza 12611, Egypt
| | - Mostafa Ali
- Department of Food Technology, Faculty of Agriculture, Kafrelsheikh University, Egypt
| | - Amin Ammar
- Department of Food Technology, Faculty of Agriculture, Kafrelsheikh University, Egypt
| | - Mohamed N Saleh
- Agricultural Research Center, Food Technology Research Institute, Giza 12611, Egypt
| | - Enas El Fadly
- Dairy Sciences Department, Faculty of Agriculture, Kafrelshiekh University, Egypt
| | | | - Mohamed Abdin
- Agricultural Research Center, Food Technology Research Institute, Giza 12611, Egypt.
| |
Collapse
|
6
|
Bouranis JA, Wong CP, Beaver LM, Uesugi SL, Papenhausen EM, Choi J, Davis EW, Da Silva AN, Kalengamaliro N, Chaudhary R, Kharofa J, Takiar V, Herzog TJ, Barrett W, Ho E. Sulforaphane Bioavailability in Healthy Subjects Fed a Single Serving of Fresh Broccoli Microgreens. Foods 2023; 12:3784. [PMID: 37893677 PMCID: PMC10606698 DOI: 10.3390/foods12203784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 09/26/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Cruciferous vegetable consumption is associated with numerous health benefits attributed to the phytochemical sulforaphane (SFN) that exerts antioxidant and chemopreventive properties, among other bioactive compounds. Broccoli sprouts, rich in SFN precursor glucoraphanin (GRN), have been investigated in numerous clinical trials. Broccoli microgreens are similarly rich in GRN but have remained largely unexplored. The goal of this study was to examine SFN bioavailability and the microbiome profile in subjects fed a single serving of fresh broccoli microgreens. Eleven subjects participated in a broccoli microgreens feeding study. Broccoli microgreens GRN and SFN contents and stability were measured. Urine and stool SFN metabolite profiles and microbiome composition were examined. Broccoli microgreens had similar GRN content to values previously reported for broccoli sprouts, which was stable over time. Urine SFN metabolite profiles in broccoli microgreens-fed subjects were similar to those reported previously in broccoli sprouts-fed subjects, including the detection of SFN-nitriles. We also reported the detection of SFN metabolites in stool samples for the first time. A single serving of broccoli microgreens did not significantly alter microbiome composition. We showed in this study that broccoli microgreens are a significant source of SFN. Our work provides the foundation for future studies to establish the health benefits of broccoli microgreens consumption.
Collapse
Affiliation(s)
- John A. Bouranis
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA; (J.A.B.); (C.P.W.); (L.M.B.); (S.L.U.); (E.M.P.); (J.C.)
- School of Public Health and Nutrition, Oregon State University, Corvallis, OR 97331, USA
| | - Carmen P. Wong
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA; (J.A.B.); (C.P.W.); (L.M.B.); (S.L.U.); (E.M.P.); (J.C.)
- School of Public Health and Nutrition, Oregon State University, Corvallis, OR 97331, USA
| | - Laura M. Beaver
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA; (J.A.B.); (C.P.W.); (L.M.B.); (S.L.U.); (E.M.P.); (J.C.)
- School of Public Health and Nutrition, Oregon State University, Corvallis, OR 97331, USA
| | - Sandra L. Uesugi
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA; (J.A.B.); (C.P.W.); (L.M.B.); (S.L.U.); (E.M.P.); (J.C.)
| | - Ethan M. Papenhausen
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA; (J.A.B.); (C.P.W.); (L.M.B.); (S.L.U.); (E.M.P.); (J.C.)
| | - Jaewoo Choi
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA; (J.A.B.); (C.P.W.); (L.M.B.); (S.L.U.); (E.M.P.); (J.C.)
| | - Edward W. Davis
- Center for Quantitative Life Sciences, Oregon State University, Corvallis, OR 97331, USA;
| | | | | | - Rekha Chaudhary
- Department of Medical Oncology, University of Cincinnati, Cincinnati, OH 45221, USA;
| | - Jordan Kharofa
- Department of Radiation Oncology, University of Cincinnati, Cincinnati, OH 45221, USA; (J.K.); (V.T.); (W.B.)
| | - Vinita Takiar
- Department of Radiation Oncology, University of Cincinnati, Cincinnati, OH 45221, USA; (J.K.); (V.T.); (W.B.)
| | - Thomas J. Herzog
- Department of OB/GYN, Division of Gynecologic Oncology, University of Cincinnati, Cincinnati, OH 45221, USA;
| | - William Barrett
- Department of Radiation Oncology, University of Cincinnati, Cincinnati, OH 45221, USA; (J.K.); (V.T.); (W.B.)
| | - Emily Ho
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA; (J.A.B.); (C.P.W.); (L.M.B.); (S.L.U.); (E.M.P.); (J.C.)
- School of Public Health and Nutrition, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
7
|
Mthembu SXH, Mazibuko-Mbeje SE, Moetlediwa MT, Muvhulawa N, Silvestri S, Orlando P, Nkambule BB, Muller CJF, Ndwandwe D, Basson AK, Tiano L, Dludla PV. Sulforaphane: A nutraceutical against diabetes-related complications. Pharmacol Res 2023; 196:106918. [PMID: 37703962 DOI: 10.1016/j.phrs.2023.106918] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 09/15/2023]
Abstract
There is an increasing interest in the use of nutraceuticals and plant-derived bioactive compounds from foods for their potential health benefits. For example, as a major active ingredient found from cruciferous vegetables like broccoli, there has been growing interest in understanding the therapeutic effects of sulforaphane against diverse metabolic complications. The past decade has seen an extensive growth in literature reporting on the potential health benefits of sulforaphane to neutralize pathological consequences of oxidative stress and inflammation, which may be essential in protecting against diabetes-related complications. In fact, preclinical evidence summarized within this review supports an active role of sulforaphane in activating nuclear factor erythroid 2-related factor 2 or effectively modulating AMP-activated protein kinase to protect against diabetic complications, including diabetic cardiomyopathy, diabetic neuropathy, diabetic nephropathy, as well as other metabolic complications involving non-alcoholic fatty liver disease and skeletal muscle insulin resistance. With clinical evidence suggesting that foods rich in sulforaphane like broccoli can improve the metabolic status and lower cardiovascular disease risk by reducing biomarkers of oxidative stress and inflammation in patients with type 2 diabetes. This information remains essential in determining the therapeutic value of sulforaphane or its potential use as a nutraceutical to manage diabetes and its related complications. Finally, this review discusses essential information on the bioavailability profile of sulforaphane, while also covering information on the pathological consequences of oxidative stress and inflammation that drive the development and progression of diabetes.
Collapse
Affiliation(s)
- Sinenhlanhla X H Mthembu
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa; Department of Biochemistry, North-West University, Mafikeng Campus, Mmabatho 2735, South Africa
| | | | - Marakiya T Moetlediwa
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa; Department of Biochemistry, North-West University, Mafikeng Campus, Mmabatho 2735, South Africa
| | - Ndivhuwo Muvhulawa
- Department of Biochemistry, North-West University, Mafikeng Campus, Mmabatho 2735, South Africa; Cochrane South Africa, South African Medical Research Council, Tygerberg 7505, South Africa
| | - Sonia Silvestri
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona 60131, Italy
| | - Patrick Orlando
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona 60131, Italy
| | - Bongani B Nkambule
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Christo J F Muller
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa; Centre for Cardiometabolic Research Africa (CARMA), Division of Medical Physiology, Stellenbosch University, Tygerberg 7505, South Africa; Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa
| | - Duduzile Ndwandwe
- Cochrane South Africa, South African Medical Research Council, Tygerberg 7505, South Africa
| | - Albertus K Basson
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa
| | - Luca Tiano
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona 60131, Italy
| | - Phiwayinkosi V Dludla
- Cochrane South Africa, South African Medical Research Council, Tygerberg 7505, South Africa; Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa.
| |
Collapse
|
8
|
Syed RU, Moni SS, Break MKB, Khojali WMA, Jafar M, Alshammari MD, Abdelsalam K, Taymour S, Alreshidi KSM, Elhassan Taha MM, Mohan S. Broccoli: A Multi-Faceted Vegetable for Health: An In-Depth Review of Its Nutritional Attributes, Antimicrobial Abilities, and Anti-inflammatory Properties. Antibiotics (Basel) 2023; 12:1157. [PMID: 37508253 PMCID: PMC10376324 DOI: 10.3390/antibiotics12071157] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/01/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023] Open
Abstract
Broccoli, Brassica oleracea var. italica, has recently gained considerable attention due to its remarkable nutritional composition and numerous health benefits. In this review, the nutritional aspects of broccoli are examined, highlighting its rich nutrient content and essential bioactive compounds. The cruciferous vegetable broccoli is a rich source of several important nutrients, including fiber, vitamins (A, C, and K), minerals (calcium, potassium, and iron), and antioxidants. It has also been shown to contain bioactive compounds such as glucosinolates, sulforaphane, and indole-3-carbinol, all of which have been shown to have significant health-promoting effects. These chemicals are known to have potent antioxidant, anti-inflammatory, and anticancer effects. This review article aims to comprehensively examine the diverse spectrum of nutrients contained in broccoli and explore its medicinal potential to promote human health.
Collapse
Affiliation(s)
- Rahamat Unissa Syed
- Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia
- Medical and Diagnostic Research Centre, University of Hail, Hail 55473, Saudi Arabia
| | | | - Mohammed Khaled Bin Break
- Medical and Diagnostic Research Centre, University of Hail, Hail 55473, Saudi Arabia
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia
| | - Weam M A Khojali
- Medical and Diagnostic Research Centre, University of Hail, Hail 55473, Saudi Arabia
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Omdurman Islamic University, Al Khartoum 14415, Sudan
| | - Mohammed Jafar
- Department of Pharmaceutics, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 34212, Saudi Arabia
| | - Maali D Alshammari
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia
| | - Karim Abdelsalam
- Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Soha Taymour
- Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | | | | | - Syam Mohan
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan 45142, Saudi Arabia
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai 602105, India
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun 248007, India
| |
Collapse
|
9
|
Gasmi A, Gasmi Benahmed A, Shanaida M, Chirumbolo S, Menzel A, Anzar W, Arshad M, Cruz-Martins N, Lysiuk R, Beley N, Oliinyk P, Shanaida V, Denys A, Peana M, Bjørklund G. Anticancer activity of broccoli, its organosulfur and polyphenolic compounds. Crit Rev Food Sci Nutr 2023; 64:8054-8072. [PMID: 37129118 DOI: 10.1080/10408398.2023.2195493] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The use of natural bioactive constituents from various food sources for anticancer purposes has become increasingly popular worldwide. Broccoli (Brassica oleracea var. italica) is on the top of the consumed vegetables by the masses. Its raw matrix contains a plethora of phytochemicals, such as glucosinolates and phenolic compounds, along with rich amounts of vitamins, and minerals. Consumption of broccoli-derived phytochemicals provides strong antioxidant effects, particularly due to its sulforaphane content, while modulating numerous molecules involved in cell cycle regulation, control of apoptosis, and tuning enzyme activity. Thus, the inclusion of broccoli in the daily diet lowers the susceptibility to developing cancers. Numerous studies have underlined the undisputable role of broccoli in the diet as a chemopreventive raw food, owing to the content in sulforaphane, an isothiocyanate produced as a result of hydrolysis of precursor glucosinolates called glucoraphanin. This review will provide evidence supporting the specific role of fresh florets and sprouts of broccoli and its key bioactive constituents in the prevention and treatment of different cancers; a number of studies carried out in the in vitro and in vivo conditions as well as clinical trials were analyzed.
Collapse
Affiliation(s)
- Amin Gasmi
- Société Francophone de Nutrithérapie et de Nutrigénétique Appliquée, Villeurbanne, France
- International Congress of Nutritional Sciences, Casablanca, Morocco
- Société Marocaine de Micronutrition et de Nutrigénétique Appliquée, Casablanca, Morocco
| | | | - Mariia Shanaida
- I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
- CONEM Scientific Secretary, Verona, Italy
| | | | - Wajiha Anzar
- Dow University of Health Sciences, Karachi, Pakistan
| | - Mehreen Arshad
- National University of Sciences and Technology, Islamabad, Pakistan
| | - Natália Cruz-Martins
- Faculty of Medicine, University of Porto, Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
- Institute of Research and Advanced Training in Health Sciences and Technologies (CESPU), Rua Central de Gandra, Gandra PRD, Portugal
- TOXRUN - Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, Gandra, Portugal
| | - Roman Lysiuk
- Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
- CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Nataliya Beley
- I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Petro Oliinyk
- Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
- CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Volodymyr Shanaida
- Design of Machine Tools, Instruments and Machines Department, Ternopil Ivan Puluj National Technical University, Ternopil, Ukraine
| | | | - Massimiliano Peana
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, Sassari, Italy
| | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Mo i Rana, Norway
| |
Collapse
|
10
|
Li L, Ma P, Nirasawa S, Liu H. Formation, immunomodulatory activities, and enhancement of glucosinolates and sulforaphane in broccoli sprouts: a review for maximizing the health benefits to human. Crit Rev Food Sci Nutr 2023; 64:7118-7148. [PMID: 36847125 DOI: 10.1080/10408398.2023.2181311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Broccoli sprouts have been considered as functional foods which have received increasing attention because they have been highly prized for glucosinolates, phenolics, and vitamins in particular glucosinolates. One of hydrolysates-sulforaphane from glucoraphanin is positively associated with the attenuation of inflammatory, which could reduce diabetes, cardiovascular and cancer risk. In recent decades, the great interest in natural bioactive components especially for sulforaphane promotes numerous researchers to investigate the methods to enhance glucoraphanin levels in broccoli sprouts and evaluate the immunomodulatory activities of sulforaphane. Therefore, glucosinolates profiles are different in broccoli sprouts varied with genotypes and inducers. Physicochemical, biological elicitors, and storage conditions were widely studied to promote the accumulation of glucosinolates and sulforaphane in broccoli sprouts. These inducers would stimulate the biosynthesis pathway gene expression and enzyme activities of glucosinolates and sulforaphane to increase the concentration in broccoli sprouts. The immunomodulatory activity of sulforaphane was summarized to be a new therapy for diseases with immune dysregulation. The perspective of this review served as a potential reference for customers and industries by application of broccoli sprouts as a functional food and clinical medicine.
Collapse
Affiliation(s)
- Lizhen Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Peihua Ma
- Department of Nutrition and Food Science, College of Agriculture and Natural Resources, University of Maryland, College Park, MD, USA
| | - Satoru Nirasawa
- Biological Resources and Post-harvest Division, Japan International Research Center for Agricultural Science, Tsukuba, Ibaraki Japan
| | - Haijie Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
11
|
Microorganisms-An Effective Tool to Intensify the Utilization of Sulforaphane. Foods 2022; 11:foods11233775. [PMID: 36496582 PMCID: PMC9737538 DOI: 10.3390/foods11233775] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
Sulforaphane (SFN) was generated by the hydrolysis of glucoraphanin under the action of myrosinase. However, due to the instability of SFN, the bioavailability of SFN was limited. Meanwhile, the gut flora obtained the ability to synthesize myrosinase and glucoraphanin, which could be converted into SFN in the intestine. However, the ability of microorganisms to synthesize myrosinase in the gut was limited. Therefore, microorganisms with myrosinase synthesis ability need to be supplemented. With the development of research, microorganisms with high levels of myrosinase synthesis could be obtained by artificial selection and gene modification. Researchers found the SFN production rate of the transformed microorganisms could be significantly improved. However, despite applying transformation technology and regulating nutrients to microorganisms, it still could not provide the best efficiency during generating SFN and could not accomplish colonization in the intestine. Due to the great effect of microencapsulation on improving the colonization ability of microorganisms, microencapsulation is currently an important way to deliver microorganisms into the gut. This article mainly analyzed the possibility of obtaining SFN-producing microorganisms through gene modification and delivering them to the gut via microencapsulation to improve the utilization rate of SFN. It could provide a theoretical basis for expanding the application scope of SFN.
Collapse
|
12
|
Deng WW, Mei XP, Cheng ZJ, gan TX, Tian X, Hu JN, Zang CR, Sun B, Wu J, Deng Y, Ghiladi R, Lorimer GH, Keceli G, Wang J. Extraction of weak hydrophobic sulforaphane from broccoli by salting-out assisted hydrophobic deep eutectic solvent extraction. Food Chem 2022; 405:134817. [DOI: 10.1016/j.foodchem.2022.134817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 10/25/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022]
|
13
|
Mahn A, Pérez CE, Zambrano V, Barrientos H. Maximization of Sulforaphane Content in Broccoli Sprouts by Blanching. Foods 2022; 11:foods11131906. [PMID: 35804720 PMCID: PMC9266238 DOI: 10.3390/foods11131906] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/13/2022] [Accepted: 06/24/2022] [Indexed: 11/16/2022] Open
Abstract
Broccoli sprouts are a recognized source of health-promoting compounds, such as glucosinolates, glucoraphanin, and sulforaphane (SFN). Maximization of SFN content can be achieved by technological processing. We investigated the effect of blanching conditions to determine the optimal treatment that maximizes sulforaphane content in broccoli sprouts. Broccoli seeds (cv. Traditional) grown under controlled conditions were harvested after 11 days from germination and subjected to different blanching conditions based on a central composite design with temperature and time as experimental factors. Results were analyzed by ANOVA followed by a Tukey test. The optimum conditions were identified through response surface methodology. Blanching increased sulforaphane content compared with untreated sprouts, agreeing with a decrease in total glucosinolates and glucoraphanin content. Temperature significantly affected SFN content. Higher temperatures and shorter immersion times favor glucoraphanin hydrolysis, thus increasing SFN content. The optimum conditions were blanching at 61 °C for 4.8 min, resulting in 54.3 ± 0.20 µmol SFN/g dry weight, representing a 3.3-fold increase with respect to untreated sprouts. This is the highest SFN content reported for sprouts subjected to any treatment so far. The process described in this work may contribute to developing functional foods and nutraceuticals that provide sulforaphane as an active principle.
Collapse
Affiliation(s)
- Andrea Mahn
- Department of Chemical Engineering, Faculty of Engineering, University of Santiago of Chile, Santiago 9170019, Chile;
- Correspondence: ; Tel.: +56-227-181-833
| | - Carmen Elena Pérez
- Department of Agro Industrial Engineering, Pontificia Bolivariana University, Cra. 6 No. 97A-99, Montería 230001, Colombia;
| | - Víctor Zambrano
- Department of Chemical Engineering, Faculty of Engineering, University of Santiago of Chile, Santiago 9170019, Chile;
| | - Herna Barrientos
- Department of Materials Chemistry, Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago 9170019, Chile;
| |
Collapse
|
14
|
Houška M, Silva FVM. The Effect of Processing Methods on Food Quality and Human Health: Latest Advances and Prospects. Foods 2022; 11:foods11040611. [PMID: 35206086 PMCID: PMC8870817 DOI: 10.3390/foods11040611] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 02/04/2023] Open
Affiliation(s)
- Milan Houška
- Food Research Institute Prague, 102 00 Prague, Czech Republic
- Correspondence:
| | - Filipa Vinagre Marques Silva
- LEAF, Linking Landscape, Environment, Agriculture and Food, Associated Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal;
| |
Collapse
|