1
|
Tibaldi C, Oliveira S, Dinelli G, Marotti I, Raymundo A. Nutritional features of organic peas (Pisum sativum L.) cultivated in different Italian environments and rheological profile of pea-enriched crackers. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:3606-3619. [PMID: 39907070 PMCID: PMC11990044 DOI: 10.1002/jsfa.14156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 12/19/2024] [Accepted: 12/21/2024] [Indexed: 02/06/2025]
Abstract
BACKGROUND Legumes are a key component of the human diet and a primary source of plant-based protein. They have attracted global attention as potential plant-based meat alternatives due to their numerous health benefits, and they contribute to a more sustainable and healthy food system. Among pulses, peas (Pisum sativum L.) are considered a good source of proteins, fibers, starch, minerals, and vitamins. This study evaluated the effect of environmental conditions on nutritional profile of peas cultivated in an organic farming system, in different Italian environments (mountainous and hilly), during different cultivation years (2021 and 2022). Pea grain from peas cultivated under the various conditions was used to prepare pea-based crackers containing 6% pea flour. The appearance, physical properties (rheology and texture), and nutritional profile of the snacks were evaluated, and sensory analysis was conducted. RESULTS The nutritional and bioactive compounds were strongly related and the environment exerted a substantial impact on most of the nutritional components (proteins and carbohydrates), due to climatic conditions during the vegetative and reproductive stage of the crop. The incorporation of cultivated peas into wheat-based crackers improved their functional and nutritional quality while maintaining consumer acceptability, as demonstrated by sensory analysis. CONCLUSIONS The results confirmed that growing conditions significantly influence the nutritional composition of peas, enhancing their quality and that of the resulting crackers. This aligns with the increasing global demand for high-quality, sustainable food products. © 2025 The Author(s). Journal of the Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Camilla Tibaldi
- Department of Agricultural and Food SciencesAlma Mater Studiorum – University of BolognaBolognaItaly
| | - Sónia Oliveira
- LEAF—Linking Landscape, Environment, Agriculture and Food Research Center, Associated Laboratory TERRAInstituto Superior de Agronomia, Universidade de LisboaLisbonPortugal
| | - Giovanni Dinelli
- Department of Agricultural and Food SciencesAlma Mater Studiorum – University of BolognaBolognaItaly
| | - Ilaria Marotti
- Department of Agricultural and Food SciencesAlma Mater Studiorum – University of BolognaBolognaItaly
| | - Anabela Raymundo
- LEAF—Linking Landscape, Environment, Agriculture and Food Research Center, Associated Laboratory TERRAInstituto Superior de Agronomia, Universidade de LisboaLisbonPortugal
| |
Collapse
|
2
|
Matheus J, Alegria MJ, Nunes MC, Raymundo A. Algae-Boosted Chickpea Hummus: Improving Nutrition and Texture with Seaweeds and Microalgae. Foods 2024; 13:2178. [PMID: 39063262 PMCID: PMC11276347 DOI: 10.3390/foods13142178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/04/2024] [Accepted: 07/06/2024] [Indexed: 07/28/2024] Open
Abstract
The global food industry faces a critical challenge in ensuring sustainable practices to meet the demands of a growing population while minimizing environmental impact. At the same time, consumer awareness and the demand for quality products drive innovation and inspire positive changes in the food supply chain. Aiming to create a more sustainable and nutrient-rich alternative, this study is summarized by characterizing the physical and chemical characteristics of algae-enriched chickpea hummus: an innovative approach to popular food products. The algae-enriched hummuses were developed with an incorporation (6% w/w) of Gelidium corneum and Fucus vesiculosus seaweeds and Chlorella vulgaris (hetero and autotrophic) microalgae to reveal their technological potential and evaluate the nutritional and rheological characteristics relative to a control hummus (without algae). From a nutritional perspective, the main results indicated that hummus enriched with microalgae showed an increase in protein content and an improved mineral profile. This was particularly notable for the seaweed F. vesiculosus and the autotrophic microalga C. vulgaris, leading to claims of being a "source of" and "rich in" various minerals. Additionally, the antioxidant activity of hummus containing F. vesiculosus and C. vulgaris increased significantly compared to the control. From a rheological perspective, incorporating algae into the humus strengthened its structure. The microalgae further enhanced the dish's elasticity and firmness, thus improving this chickpea-based dish´s overall texture and quality.
Collapse
Affiliation(s)
- José Matheus
- LEAF—Linking Landscape, Environment, Agriculture and Food Research Center, Associated Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal; (J.M.); (M.C.N.)
| | - Maria João Alegria
- SUMOL+COMPAL, Rua Dr. António João Eusébio, 24, 2790-179 Carnaxide, Portugal;
| | - Maria Cristiana Nunes
- LEAF—Linking Landscape, Environment, Agriculture and Food Research Center, Associated Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal; (J.M.); (M.C.N.)
| | - Anabela Raymundo
- LEAF—Linking Landscape, Environment, Agriculture and Food Research Center, Associated Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal; (J.M.); (M.C.N.)
| |
Collapse
|
3
|
Pradhan A, Anis A, Alam MA, Al-Zahrani SM, Jarzebski M, Pal K. Effect of Soy Wax/Rice Bran Oil Oleogel Replacement on the Properties of Whole Wheat Cookie Dough and Cookies. Foods 2023; 12:3650. [PMID: 37835303 PMCID: PMC10572930 DOI: 10.3390/foods12193650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
This study investigated the replacement of butter with soy wax (SW)/rice bran oil (RBO) oleogel in varied proportions in cookie dough and the resulting cookies. The study mainly evaluates the physical, textural, and chemical properties of the butter cookie dough and cookies by replacing butter with SW/RBO oleogel. The dough was assessed using moisture analysis, microscopy, FTIR Spectroscopy (Fourier Transform Infrared) and impedance spectroscopies, and texture analysis. Micrographs of the dough showed that D-50 (50% butter + 50% oleogel) had an optimal distribution of water and protein. D-0 (control sample containing 100% butter) showed the lowest impedance values. Moisture content ranged between 23% and 25%. FTIR spectroscopy suggested that D-50 exhibited a consistent distribution of water and protein, which CLSM and brightfield microscopy supported. Texture analysis revealed that the dough samples exhibited predominantly fluidic behavior. As the amount of oleogel was raised, the dough became firmer. The prepared cookies showed a brown periphery and light-colored center. Further, a corresponding increase in surface cracks was observed as the oleogel content was increased. Cookies moisture analysis revealed a range between 11 and 15%. Minute changes were observed in the texture and dimensions of the cookies. In summary, it can be concluded that replacing butter with oleogel by up to 50% seems to be feasible without significantly compromising the physicochemical properties of cookie dough and cookies.
Collapse
Affiliation(s)
- Aditi Pradhan
- Center for Biotechnology, School of Pharmaceutical Sciences, Sikha ‘O’ Anusandhan Deemed to be University, Orissa 751030, India;
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Odisha 769008, India
| | - Arfat Anis
- SABIC Polymer Research Center (SPRC), Department of Chemical Engineering, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia;
| | - Mohammad Asif Alam
- Center of Excellence for Research in Engineering Materials (CEREM), College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia;
| | - Saeed M. Al-Zahrani
- SABIC Polymer Research Center (SPRC), Department of Chemical Engineering, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia;
| | - Maciej Jarzebski
- Department of Physics and Biophysics, Faculty of Food Science and Nutrition, Poznań University of Life, Sciences, Wojska Polskiego 38/42, 60-637 Poznań, Poland;
| | - Kunal Pal
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Odisha 769008, India
| |
Collapse
|
4
|
Simões S, Carrera Sanchez C, Santos AJ, Figueira D, Prista C, Raymundo A. Impact of Grass Pea Sweet Miso Incorporation in Vegan Emulsions: Rheological, Nutritional and Bioactive Properties. Foods 2023; 12:foods12071362. [PMID: 37048181 PMCID: PMC10093471 DOI: 10.3390/foods12071362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/24/2023] [Accepted: 03/16/2023] [Indexed: 04/14/2023] Open
Abstract
Grass pea (Lathyrus sativus L.) is a pulse with historical importance in Portugal, but that was forgotten over time. Previous to this work, an innovative miso was developed to increase grass pea usage and consumption, using fermentation as a tool to extol this ingredient. Our work's goal was to develop a new vegan emulsion with added value, using grass pea sweet miso as a clean-label ingredient, aligned with the most recent consumer trends. For this, a multidisciplinary approach with microbiological, rheological and chemical methods was followed. Grass pea sweet miso characterization revealed a promising ingredient in comparison with soybean miso, namely for its low fat and sodium chloride content and higher content in antioxidant potential. Furthermore, in vitro antimicrobial activity assays showed potential as a preservation supporting agent. After grass pea sweet miso characterization, five formulations with 5-15% (w/w) of miso were tested, with a vegan emulsion similar to mayonnaise as standard. The most promising formulation, 7.5% (w/w) miso, presented adequate rheological properties, texture profile and fairly good stability, presenting a unimodal droplet size distribution and stable backscattering profile. The addition of 0.1% (w/w) psyllium husk, a fiber with great water-intake capacity, solved the undesirable release of exudate from the emulsion, as observed on the backscattering results. Furthermore, the final product presented a significantly higher content of phenolic compounds and antioxidant activity in comparison with the standard vegan emulsion.
Collapse
Affiliation(s)
- Sara Simões
- LEAF-Linking Landscape, Environment, Agriculture and Food Research Center, Associated Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Cecilio Carrera Sanchez
- Departamento de Ingeniería Química, Escuela Politécnica Superior, Universidad de Sevilla, Calle Virgen de África, 7, 41011 Sevilla, Spain
| | - Albano Joel Santos
- LEAF-Linking Landscape, Environment, Agriculture and Food Research Center, Associated Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Diogo Figueira
- Mendes Gonçalves SA, Zona Industrial, lote 6, 2154-909 Golegã, Portugal
| | - Catarina Prista
- LEAF-Linking Landscape, Environment, Agriculture and Food Research Center, Associated Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Anabela Raymundo
- LEAF-Linking Landscape, Environment, Agriculture and Food Research Center, Associated Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| |
Collapse
|
5
|
Dhal S, Anis A, Shaikh HM, Alhamidi A, Pal K. Effect of Mixing Time on Properties of Whole Wheat Flour-Based Cookie Doughs and Cookies. Foods 2023; 12:941. [PMID: 36900458 PMCID: PMC10001416 DOI: 10.3390/foods12050941] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
This study investigated if whole wheat flour-based cookie dough's physical properties were affected by mixing time (1 to 10 min). The cookie dough quality was assessed using texture (spreadability and stress relaxation), moisture content, and impedance analysis. The distributed components were better organized in dough mixed for 3 min when compared with the other times. The segmentation analysis of the dough micrographs suggested that higher mixing time resulted in the formation of water agglomeration. The infrared spectrum of the samples was analyzed based on the water populations, amide I region, and starch crystallinity. The analysis of the amide I region (1700-1600 cm-1) suggested that β-turns and β-sheets were the dominating protein secondary structures in the dough matrix. Conversely, most samples' secondary structures (α-helices and random coil) were negligible or absent. MT3 dough exhibited the lowest impedance in the impedance tests. Test baking of the cookies from doughs mixed at different times was performed. There was no discernible change in appearance due to the change in the mixing time. Surface cracking was noticeable on all cookies, a trait often associated with cookies made with wheat flour that contributed to the impression of an uneven surface. There was not much variation in cookie size attributes. Cookies ranged in moisture content from 11 to 13.5%. MT5 (mixing time of 5 min) cookies demonstrated the strongest hydrogen bonding. Overall, it was observed that the cookies hardened as mixing time rose. The texture attributes of the MT5 cookies were more reproducible than the other cookie samples. In summary, it can be concluded that the whole wheat flour cookies prepared with a creaming time and mixing time of 5 min each resulted in good quality cookies. Therefore, this study evaluated the effect of mixing time on the physical and structural properties of the dough and, eventually, its impact on the baked product.
Collapse
Affiliation(s)
- Somali Dhal
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela 769008, India
| | - Arfat Anis
- SABIC Polymer Research Center (SPRC), Department of Chemical Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia
| | - Hamid M Shaikh
- SABIC Polymer Research Center (SPRC), Department of Chemical Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia
| | - Abdullah Alhamidi
- SABIC Polymer Research Center (SPRC), Department of Chemical Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia
| | - Kunal Pal
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela 769008, India
| |
Collapse
|
6
|
Therapeutic Potential of Deflamin against Colorectal Cancer Development and Progression. Cancers (Basel) 2022; 14:cancers14246182. [PMID: 36551666 PMCID: PMC9776913 DOI: 10.3390/cancers14246182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are proteolytic enzymes that play a crucial role in tumor microenvironment remodeling, contributing to inflammatory and angiogenic processes, and ultimately promoting tumor maintenance and progression. Several studies on bioactive polypeptides isolated from legumes have shown anti-migratory, anti-MMPs, and anti-tumor effects, potentially constituting novel strategies for both the prevention and progression of cancer. In this work, we investigated the anti-tumor role of deflamin, a protein oligomer isolated from white lupine seeds (Lupinus albus) reported to inhibit MMP-9 and cell migration in colorectal cancer (CRC) cell lines. We found that deflamin exerts an inhibitory effect on tumor growth and metastasis formation, contributing to increased tumor apoptosis in the xenotransplanted zebrafish larvae model. Furthermore, deflamin resulted not only in a significant reduction in MMP-2 and MMP-9 activity but also in impaired cancer cell migration and invasion in vitro. Using the xenograft zebrafish model, we observed that deflamin inhibits collagen degradation and angiogenesis in the tumor microenvironment in vivo. Overall, our work reveals the potential of deflamin as an agent against CRC development and progression.
Collapse
|
7
|
Mota J, Casimiro S, Fernandes J, Hartmann RM, Schemitt E, Picada J, Costa L, Marroni N, Raymundo A, Lima A, Ferreira RB. Lupin Protein Concentrate as a Novel Functional Food Additive That Can Reduce Colitis-Induced Inflammation and Oxidative Stress. Nutrients 2022; 14:2102. [PMID: 35631241 PMCID: PMC9143369 DOI: 10.3390/nu14102102] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 01/27/2023] Open
Abstract
Food fortification with bioactive compounds may constitute a way to ameliorate inflammatory bowel diseases (IBDs). Lupin seeds contain an oligomer named deflamin that can reduce IBD’s symptoms via MMP-9 inhibition. Here, our goal was to develop a lupin protein concentrate (LPC) enriched in deflamin and to test its application as a food additive to be used as a functional food against colitis. The nutritional profile of the LPC was evaluated, and its efficacy in vivo was tested, either alone or as added to wheat cookies. The LPC presented high protein and carbohydrate contents (20.09 g/100 g and 62.05/100 g, respectively), as well as antioxidant activity (FRAP: 351.19 mg AAE/10 mg and DPPH: 273.9 mg AAE/10 mg). It was also effective against TNBS-induced colitis in a dose dependent-manner, reducing DAI scores by more than 50% and concomitantly inhibiting MMP-9 activity. When added to cookies, the LPC activities were maintained after baking, and a 4-day diet with LPC cookies induced a significant protective effect against acetic acid-induced colitis, overall bringing lesions, oxidative stress and DNA damage levels to values significantly similar to controls (p < 0.001). The results show that the LPC is an efficient way to deliver deflamin in IBD-targeted diets.
Collapse
Affiliation(s)
- Joana Mota
- LEAF—Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisbon, Portugal; (J.F.); (A.R.); (A.L.); (R.B.F.)
- Faculty of Veterinary Medicine, Lusófona University, 1749-024 Lisbon, Portugal
| | - Sandra Casimiro
- Clinical and Translational Oncology Research Unit, Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina de Lisboa, Universidade de Lisboa, 1649-028 Lisbon, Portugal; (S.C.); (L.C.)
| | - João Fernandes
- LEAF—Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisbon, Portugal; (J.F.); (A.R.); (A.L.); (R.B.F.)
| | - Renata M. Hartmann
- Laboratory of Experimental Hepatology and Gastroenterology, Hospital de Clínicas de Porto Alegre, Porto Alegre 90040-060, Brazil; (R.M.H.); (E.S.); (N.M.)
| | - Elizângela Schemitt
- Laboratory of Experimental Hepatology and Gastroenterology, Hospital de Clínicas de Porto Alegre, Porto Alegre 90040-060, Brazil; (R.M.H.); (E.S.); (N.M.)
| | - Jaqueline Picada
- Genetic Toxicologic Laboratory, Lutheran University of Brazil (ULBRA), Canoas 92425-900, Brazil;
| | - Luís Costa
- Clinical and Translational Oncology Research Unit, Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina de Lisboa, Universidade de Lisboa, 1649-028 Lisbon, Portugal; (S.C.); (L.C.)
- Oncology Division, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, 1649-028 Lisbon, Portugal
| | - Norma Marroni
- Laboratory of Experimental Hepatology and Gastroenterology, Hospital de Clínicas de Porto Alegre, Porto Alegre 90040-060, Brazil; (R.M.H.); (E.S.); (N.M.)
| | - Anabela Raymundo
- LEAF—Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisbon, Portugal; (J.F.); (A.R.); (A.L.); (R.B.F.)
| | - Ana Lima
- LEAF—Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisbon, Portugal; (J.F.); (A.R.); (A.L.); (R.B.F.)
- Faculty of Veterinary Medicine, Lusófona University, 1749-024 Lisbon, Portugal
| | - Ricardo Boavida Ferreira
- LEAF—Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisbon, Portugal; (J.F.); (A.R.); (A.L.); (R.B.F.)
| |
Collapse
|
8
|
Gomes A, Sobral PJDA. Plant Protein-Based Delivery Systems: An Emerging Approach for Increasing the Efficacy of Lipophilic Bioactive Compounds. Molecules 2021; 27:60. [PMID: 35011292 PMCID: PMC8746547 DOI: 10.3390/molecules27010060] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 12/17/2022] Open
Abstract
The development of plant protein-based delivery systems to protect and control lipophilic bioactive compound delivery (such as vitamins, polyphenols, carotenoids, polyunsaturated fatty acids) has increased interest in food, nutraceutical, and pharmaceutical fields. The quite significant ascension of plant proteins from legumes, oil/edible seeds, nuts, tuber, and cereals is motivated by their eco-friendly, sustainable, and healthy profile compared with other sources. However, many challenges need to be overcome before their widespread use as raw material for carriers. Thus, modification approaches have been used to improve their techno-functionality and address their limitations, aiming to produce a new generation of plant-based carriers (hydrogels, emulsions, self-assembled structures, films). This paper addresses the advantages and challenges of using plant proteins and the effects of modification methods on their nutritional quality, bioactivity, and techno-functionalities. Furthermore, we review the recent progress in designing plant protein-based delivery systems, their main applications as carriers for lipophilic bioactive compounds, and the contribution of protein-bioactive compound interactions to the dynamics and structure of delivery systems. Expressive advances have been made in the plant protein area; however, new extraction/purification technologies and protein sources need to be found Their functional properties must also be deeply studied for the rational development of effective delivery platforms.
Collapse
Affiliation(s)
- Andresa Gomes
- Department of Food Engineering, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga 13635-900, Brazil
- Food Research Center (FoRC), University of São Paulo, Rua do Lago, 250, Semi-Industrial Building, Block C, São Paulo 05508-080, Brazil
| | - Paulo José do Amaral Sobral
- Department of Food Engineering, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga 13635-900, Brazil
- Food Research Center (FoRC), University of São Paulo, Rua do Lago, 250, Semi-Industrial Building, Block C, São Paulo 05508-080, Brazil
| |
Collapse
|
9
|
Sarcocornia perennis: A Salt Substitute in Savory Snacks. Foods 2021; 10:foods10123110. [PMID: 34945661 PMCID: PMC8701967 DOI: 10.3390/foods10123110] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/07/2021] [Accepted: 12/10/2021] [Indexed: 01/06/2023] Open
Abstract
Salt is the primary source of sodium in the human diet, and it is associated with hypertension and increased risk of heart disease and stroke. A growing interest in halophyte plants and food products containing this type of ingredient have been observed, to reduce the NaCl daily intake. In the present work, Sarcocornia perennis was incorporated as a food ingredient into crackers to replace the salt (NaCl) and to evaluate its impact on physical properties, water activity, nutritional composition, mineral profile, total phenolic compounds, antioxidant activity, and sensory evaluation. Concentrations of powder dried S. perennis from 1 to 10% were tested by replacing the initial salt content and adjusting the flour incorporation to the initial formulation. The incorporation of S. perennis had no relevant impact on cracker firmness, but it induced an increase in their crispness. Furthermore, the incorporation of this halophyte originated darker crackers, which was revealed by a decrease of L* and an increase of b* values. In terms of nutritional composition, the incorporation of S. perennis leads to the improvement of the snack's nutritional profile, namely in terms of phenolic compounds, antioxidant activity, and minerals, highlighting the high content in potassium, magnesium, and phosphor. Crackers with a content of 5% of S. perennis were sensorily well accepted and this level should be considered the limit of incorporation accepted by the panelists. However, by substituting 1% NaCl for an equal amount of S. perennis, it is possible to obtain a 70% reduction in sodium content, which is an important contribution to reducing the overall salt content of the diet.
Collapse
|