1
|
Ciacka K, Tyminski M, Gniazdowska A, Krasuska U. Stratification of apple seeds in the context of ROS metabolism. JOURNAL OF PLANT PHYSIOLOGY 2025; 304:154407. [PMID: 39706007 DOI: 10.1016/j.jplph.2024.154407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 12/10/2024] [Accepted: 12/10/2024] [Indexed: 12/23/2024]
Abstract
Apple (Malus domestica Borkh.) seeds exhibit deep embryonic dormancy. Uniform germination of isolated apple embryos is observed after 40-day-long cold stratification of the seeds. Stratification treatment modifies the level of reactive oxygen species (ROS), which are regarded as key regulators of seed dormancy. In this study, axes of embryos isolated from seeds stratified for 7, 14, 21, and 40 days differing in dormancy depth were used. After one week of stratification, the increased polyamine oxidase activity enables ROS generation, which is followed by an upregulation of the NADPH oxidase gene expression. Catalase activity increased after 14 days of stratification, suggesting the requirement to maintain ROS concentrations at an optimal level already in the early phase of dormancy removal. When cold stratification was prolonged, accompanied by a significant increase in ROS level, ROS scavenging by catalase was supported by elevated phenolic compounds content. Then, peroxidase activity was also the highest. As ROS-induced phenylalanine (Phe) oxidation leads to the formation of meta-tyrosine (m-Tyr) - a potentially toxic component, the levels of these amino acids were examined. The fluctuation in m-Tyr content indicates the existence of mechanisms in the tissue for the disposal of this compound. Finally, its presence may be mitigated by an increase in Phe levels. Maintaining oxidised RNA at elevated levels from the 14th day of stratification may be crucial for seed dormancy removal, ensuring translation regulation as metabolism resumes. We concluded that dormancy removal of apple seeds by stratification requires a time-dependent sequence of biochemical events reflecting ROS metabolism alterations.
Collapse
Affiliation(s)
- Katarzyna Ciacka
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776, Warsaw, Poland.
| | - Marcin Tyminski
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Agnieszka Gniazdowska
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Urszula Krasuska
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776, Warsaw, Poland
| |
Collapse
|
2
|
Fotirić Akšić MM, Pešić MB, Pećinar I, Dramićanin A, Milinčić DD, Kostić AŽ, Gašić U, Jakanovski M, Kitanović M, Meland M. Diversity and Chemical Characterization of Apple ( Malus sp.) Pollen: High Antioxidant and Nutritional Values for Both Humans and Insects. Antioxidants (Basel) 2024; 13:1374. [PMID: 39594516 PMCID: PMC11591099 DOI: 10.3390/antiox13111374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/22/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
Pollen represents a reward for pollinators and is a key element in plant-insect interactions, especially in apples, which are entomophilous species and require cross-pollination to produce economically valuable yields. The aim of this study was to analyze the chemical content of the pollen in 11 apple cultivars ('Red Aroma', 'Discovery', 'Summerred', 'Rubinstep', 'Elstar', 'Dolgo', 'Professor Sprenger', 'Asfari', 'Eden', 'Fryd' and 'Katja') grown in Norway and try to establish a relationship between them and insect attractiveness. In the applied chemical analysis, 7 sugars and sugar alcohols, 4 organic acids, 65 phenolic compounds, 18 hydroxycinnamic acid amides (phenylamides), a large number of polypeptides with a molecular weight of 300 kDa to <6.5 kDa, lipids, carotenoids, starch, pectin and cellulose were determined. The crab apples 'Dolgo' and 'Professor Sprenger', which are used as pollenizers in commercial orchards, had the highest level of sucrose, total polyphenol content (prevent oxidative damages in insects), antioxidant capacity, hydroxybenzoic acids and derivatives, quercetin and derivatives, dihyrochalcone, epicatechin, putrescine derivates, and proteins with molecular weight 66-95 kDa and >95 kDa, which made them interesting for insect pollenizers. Only the pollen of the crab apples contained quercetin-3-O-(2″-O-malonyl)-hexoside, which can be used as a marker for the apple species Malus sylvestris (L.) Mill. Apple floral pollen is a rich source of bioactive components and can be used to prevent and/or cure diseases or can be included in diets as a "superfood".
Collapse
Affiliation(s)
- Milica M. Fotirić Akšić
- Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11000 Belgrade, Serbia; (M.M.F.A.); (M.B.P.); (I.P.); (D.D.M.); (A.Ž.K.); (M.K.)
| | - Mirjana B. Pešić
- Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11000 Belgrade, Serbia; (M.M.F.A.); (M.B.P.); (I.P.); (D.D.M.); (A.Ž.K.); (M.K.)
| | - Ilinka Pećinar
- Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11000 Belgrade, Serbia; (M.M.F.A.); (M.B.P.); (I.P.); (D.D.M.); (A.Ž.K.); (M.K.)
| | - Aleksandra Dramićanin
- Faculty of Chemistry, University of Belgrade, Studentski Trg 12-16, 11000 Belgrade, Serbia;
| | - Danijel D. Milinčić
- Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11000 Belgrade, Serbia; (M.M.F.A.); (M.B.P.); (I.P.); (D.D.M.); (A.Ž.K.); (M.K.)
| | - Aleksandar Ž. Kostić
- Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11000 Belgrade, Serbia; (M.M.F.A.); (M.B.P.); (I.P.); (D.D.M.); (A.Ž.K.); (M.K.)
| | - Uroš Gašić
- Institute for Biological Research “Siniša Stanković”, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia;
| | - Mihajlo Jakanovski
- Innovative Centre of the Faculty of Chemistry, University of Belgrade, Studentski Trg 12-16, 11000 Belgrade, Serbia;
| | - Marko Kitanović
- Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11000 Belgrade, Serbia; (M.M.F.A.); (M.B.P.); (I.P.); (D.D.M.); (A.Ž.K.); (M.K.)
| | - Mekjell Meland
- Norwegian Institute of Bioeconomy Research—NIBIO Ullensvang, Ullensvangvegen 1005, 5781 Lofthus, Norway
| |
Collapse
|
3
|
Cannas C, Lostia G, Serra PA, Peana AT, Migheli R. Food and Food Waste Antioxidants: Could They Be a Potent Defence against Parkinson's Disease? Antioxidants (Basel) 2024; 13:645. [PMID: 38929084 PMCID: PMC11200518 DOI: 10.3390/antiox13060645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/18/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
Oxidative stress, an imbalance between reactive oxygen species (ROS) and endogenous antioxidants, plays an important role in the development of neurodegenerative diseases, including Parkinson's. The human brain is vulnerable to oxidative stress because of the high rate of oxygen that it needs and the high levels of polyunsaturated fatty acids, which are substrates of lipid peroxidation. Natural antioxidants inhibit oxidation and reduce oxidative stress, preventing cancer, inflammation, and neurodegenerative disorders. Furthermore, in the literature, it is reported that antioxidants, due to their possible neuroprotective activity, may offer an interesting option for better symptom management, even Parkinson's disease (PD). Natural antioxidants are usually found in several foods, such as fruits, vegetables, meat, fish, and oil, and in food wastes, such as seeds, peels, leaves, and skin. They can help the system of endogenous antioxidants, protect or repair cellular components from oxidative stress, and even halt lipid, protein, and DNA damage to neurons. This review will examine the extent of knowledge from the last ten years, about the neuroprotective potential effect of natural antioxidants present in food and food by-products, in in vivo and in vitro PD models. Additionally, this study will demonstrate that the pool of dietary antioxidants may be an important tool in the prevention of PD and an opportunity for cost savings in the public health area.
Collapse
Affiliation(s)
| | | | | | | | - Rossana Migheli
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Viale San Pietro 43, 07100 Sassari, Italy (A.T.P.)
| |
Collapse
|
4
|
Natić M, Dabić Zagorac D, Jakanovski M, Smailagić A, Čolić S, Meland M, Fotirić Akšić M. Fruit Quality Attributes of Organically Grown Norwegian Apples Are Affected by Cultivar and Location. PLANTS (BASEL, SWITZERLAND) 2024; 13:147. [PMID: 38202455 PMCID: PMC10780603 DOI: 10.3390/plants13010147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/23/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024]
Abstract
In this work, 12 apple cultivars grown organically in three regions of Norway (Telemark, Ullensvang, Viken) were analyzed in terms of fruit quality, with the aim of equating different growing regions under specific climatic conditions. Apples were analyzed for concentration levels of minerals, sugars, sugar alcohols, organic acids, total phenolic content (TPC), radical scavenging activity (RSA), and phenolic profiles. Discovery "Rose" from Telemark stored the highest level of minerals (24,094.5 mg/kg dry weight). Glucose, fructose, sucrose, and sorbitol were the major carbohydrates, whereas the predominant organic acids were quinic acid and malic acid. Cultivar Discovery from Ullensvang had the highest TPC (9.22 g/kg) and RSA (229.32 mmol TE/kg). Of the polyphenols quantified, chlorogenic acid and kaempferol-3-O-glucoside were the most abounded, accounting for 85.50%. Principal component analysis (PCA) shows that the Ullensvang region is the richest source of most carbohydrates, organic acids (quinic, shikimic, and galacturonic), and most polyphenols, whereas the highest content of minerals and maleic acid characterized Viken. Regardless of location, the Discovery cultivar had, on average, the highest sugar and polyphenol contents. The results obtained suggest that organic apples from Norway are a rich source of beneficial compounds that can have a positive impact on human health. In addition, these results may be useful for consumers in identifying apple cultivars with desirable characteristics and for the fruit industry in tracing back the origin of apples. The findings could also be of great interest for locations with similar climate and soil conditions worldwide.
Collapse
Affiliation(s)
- Maja Natić
- Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia;
| | - Dragana Dabić Zagorac
- Innovative Centre of the Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia; (D.D.Z.); (M.J.); (A.S.)
| | - Mihajlo Jakanovski
- Innovative Centre of the Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia; (D.D.Z.); (M.J.); (A.S.)
| | - Anita Smailagić
- Innovative Centre of the Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia; (D.D.Z.); (M.J.); (A.S.)
| | - Slavica Čolić
- Institute for Science Application in Agriculture, Blvd. Despota Stefana 68b, 11000 Belgrade, Serbia;
| | - Mekjell Meland
- Norwegian Institute of Bioeconomy Research—NIBIO Ullensvang, Ullensvangvegen 1005, 5781 Lofthus, Norway
| | - Milica Fotirić Akšić
- Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11000 Belgrade, Serbia;
| |
Collapse
|
5
|
Wu B, Gao K, Guo Y, Ma Y, Qiu C, Song C, Ma H. Research progress on extraction of active components from apple processing waste. Crit Rev Food Sci Nutr 2023; 64:8384-8398. [PMID: 37042630 DOI: 10.1080/10408398.2023.2199430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Apple waste (APW) is the residual product after apple processing, including apple peel, apple core, apple seed, and other components. A large quantity of APW produced is abandoned annually, leading to serious resource waste and environmental pollution. APW is rich in natural active compounds, such as pectin, polyphenols, fatty acids, and dietary fiber, which has a good use value. This paper reviewed the current research on recovering active components from APW. The traditional extraction methods (acid, alkali, physical, enzyme, etc.) and the novel extraction methods (SWE, UAE, MAE, RFAE, etc.) for the recovery of pectin, polyphenols, apple seed oil, apple seed protein, and dietary fiber from APW were systematically summarized. The basic principles, advantages, and disadvantages of different extraction methods were introduced. The requirements of different extraction methods on extraction conditions and the effects of different extraction methods on the yield, quality, and functional activity of extracted products were analyzed. The challenges and future study direction of APW extraction have prospected. This paper aims to provide a reference for other researchers interested in APW extraction, improve the utilization rate of APW and extend the value chain of the apple industry.
Collapse
Affiliation(s)
- Bengang Wu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Kun Gao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yiting Guo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yuanjin Ma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Chengcheng Qiu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Chenyu Song
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
6
|
Martins R, Sales H, Pontes R, Nunes J, Gouveia I. Food Wastes and Microalgae as Sources of Bioactive Compounds and Pigments in a Modern Biorefinery: A Review. Antioxidants (Basel) 2023; 12:antiox12020328. [PMID: 36829887 PMCID: PMC9952682 DOI: 10.3390/antiox12020328] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/18/2023] [Accepted: 01/26/2023] [Indexed: 02/04/2023] Open
Abstract
The United Nations 2030 Agenda for Sustainable Development has created more pressure on countries and society at large for the development of alternative solutions for synthetic and fossil fuel derived products, thus mitigating climate change and environmental hazards. Food wastes and microalgae have been studied for decades as potential sources of several compounds that could be employed in various fields of application from pharmaceutical to textile and packaging. Although multiple research efforts have been put towards extracting rich compounds (i.e., phenolic compounds, tocopherols, and tocotrienols) from these sources, they still remain overlooked as two major sources of bioactive compounds and pigments, mainly due to inefficient extraction processes. Hence, there is a growing need for the development of optimized extraction methods while employing non-organic solvent options following the main principles of green chemistry. This review will focus on delivering a clear and deep analysis on the existing procedures for obtaining bioactive compounds and pigments from food wastes derived from the most consumed and produced fruit crops in the world such as apples, oranges, cherries, almonds, and mangoes, and microalgal biomass, while giving light to the existing drawbacks in need to be solved in order to take full advantage of the rich properties present in these two major biorefinery sources.
Collapse
Affiliation(s)
- Rodrigo Martins
- Association BLC3—Technology and Innovation Campus, Centre Bio R&D Unit, Oliveira do Hospital, 3405-155 Coimbra, Portugal
- FibEnTech Research Unit, Faculty of Engineering, University of Beira Interior, 6200-001 Covilhã, Portugal
| | - Hélia Sales
- Association BLC3—Technology and Innovation Campus, Centre Bio R&D Unit, Oliveira do Hospital, 3405-155 Coimbra, Portugal
| | - Rita Pontes
- Association BLC3—Technology and Innovation Campus, Centre Bio R&D Unit, Oliveira do Hospital, 3405-155 Coimbra, Portugal
| | - João Nunes
- Association BLC3—Technology and Innovation Campus, Centre Bio R&D Unit, Oliveira do Hospital, 3405-155 Coimbra, Portugal
- BLC3 Evolution Lda, Oliveira do Hospital, 3405-155 Coimbra, Portugal
| | - Isabel Gouveia
- FibEnTech Research Unit, Faculty of Engineering, University of Beira Interior, 6200-001 Covilhã, Portugal
- Correspondence: ; Tel.: +35-127-531-9825
| |
Collapse
|
7
|
Valorization of Agro-Industrial Wastes by Ultrasound-Assisted Extraction as a Source of Proteins, Antioxidants and Cutin: A Cascade Approach. Antioxidants (Basel) 2022; 11:antiox11091739. [PMID: 36139813 PMCID: PMC9495669 DOI: 10.3390/antiox11091739] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/19/2022] [Accepted: 08/28/2022] [Indexed: 11/30/2022] Open
Abstract
The use of agro-industrial wastes to obtain compounds with a high added-value is increasing in the last few years in accordance with the circular economy concept. In this work, a cascade extraction approach was developed based on ultrasound-assisted extraction (UAE) for tomato, watermelon, and apple peel wastes. The protein and antioxidant compounds were obtained during the first extraction step (NaOH 3 wt.%, 98.6 W, 100% amplitude, 6.48 W/cm2, 6 min). The watermelon peels (WP) showed higher proteins and total phenolic contents (857 ± 1 mg BSA/g extract and 107.2 ± 0.2 mg GAE/100 g dm, respectively), whereas the highest antioxidant activity was obtained for apple peels (1559 ± 20 µmol TE/100 g dm, 1767 ± 5 µmol TE/100 g dm, and 902 ± 16 µmol TE/100 g dm for ABTS, FRAP and DPPH assays, respectively). The remaining residue obtained from the first extraction was subsequently extracted to obtain cutin (ethanol 40 wt.%, 58 W, 100% amplitude, 2 W/cm2, 17 min, 1/80 g/mL, pH 2.5). The morphological studies confirmed the great efficiency of UAE in damaging the vegetal cell walls. WP showed a higher non-hydrolysable cutin content (55 wt.% of the initial cutin). A different monomers’ profile was obtained for the cutin composition by GC-MS, with the cutin from tomato and apple peels being rich in polyhydroxy fatty acids whereas the cutin extracted from WP was mainly based on unsaturated fatty acids. All of the cutin samples showed an initial degradation temperature higher than 200 °C, presenting an excellent thermal stability. The strategy followed in this work has proved to be an effective valorization methodology with a high scaling-up potential for applications in the food, pharmaceutical, nutraceutical, cosmetics and biopolymer sectors.
Collapse
|
8
|
Fotirić Akšić M, Nešović M, Ćirić I, Tešić Ž, Pezo L, Tosti T, Gašić U, Dojčinović B, Lončar B, Meland M. Polyphenolics and Chemical Profiles of Domestic Norwegian Apple (Malus × domestica Borkh.) Cultivars. Front Nutr 2022; 9:941487. [PMID: 35845808 PMCID: PMC9280294 DOI: 10.3389/fnut.2022.941487] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/03/2022] [Indexed: 12/14/2022] Open
Abstract
Using modern analytical techniques, a comprehensive study of the chemical composition of fruits from apple cultivars grown in Western Norway during 2019 and 2020 was done. Metals, sugars, organic acids, antioxidant tests, and polyphenol content have been observed. In all investigated samples, the most dominant sugars were glucose, fructose, and sucrose. Among 11 tested organic acids, the dominant was malic acid, followed by citric and maleic acid. The most common metal was potassium, followed by magnesium and zinc. The quantification of polyphenols showed that among the 11 quantified polyphenols, chlorogenic acid, quercetin 3-O-rhamnoside, quercetin 3-O-glucoside, quercetin, and phlorizin were the most abundant. A detailed study of the polyphenolic profile of nine investigated apple samples provided 30 identified polyphenolic compounds from the class of hydroxybenzoic and hydroxycinnamic acids, flavonoids, and dihydrochalcones. In addition to the identified 3-O-caffeoylquinic acid, its two isomers of 5-O-caffeoylquinic acid and three esters were also found. Present polyphenols of the tested apples provided significant data on the quality of Norwegian apples, and they contribute to the distinguishing of these apple samples.
Collapse
Affiliation(s)
| | - Milica Nešović
- Institute of General and Physical Chemistry, Belgrade, Serbia
| | - Ivanka Ćirić
- Innovative Centre Faculty of Chemistry Belgrade, University of Belgrade, Belgrade, Serbia
| | - Živoslav Tešić
- Faculty of Chemistry, University of Belgrade, Belgrade, Serbia
| | - Lato Pezo
- Institute of General and Physical Chemistry, Belgrade, Serbia
| | - Tomislav Tosti
- Faculty of Chemistry, University of Belgrade, Belgrade, Serbia
| | - Uroš Gašić
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Biljana Dojčinović
- Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Biljana Lončar
- University of Novi Sad-Faculty of Technology Novi Sad, Novi Sad, Serbia
| | - Mekjell Meland
- Department of Horticulture, NIBIO Ullensvang, Norwegian Institute of Bioeconomy Research, Lofthus, Norway
- *Correspondence: Mekjell Meland
| |
Collapse
|
9
|
Analysis of Apple Fruit (Malus × domestica Borkh.) Quality Attributes Obtained from Organic and Integrated Production Systems. SUSTAINABILITY 2022. [DOI: 10.3390/su14095300] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The aim of this study was to compare total phenolic content (TPC), radical-scavenging activity (RSA), total anthocyanin content (TAC), sugar and polyphenolic profiles of two apple cultivars (‘Discovery’ and ‘Red Aroma Orelind’) from organic and integrated production systems in climatic conditions of Western Norway. Sixteen sugars and four sugar alcohols and 19 polyphenols were found in the peel, but less polyphenols were detected in the pulp. The peel of both apples and in both production systems had significantly higher TPC and RSA than the pulp. The peel from integrated apples had higher TPC than the peel from organic apples, while organic apples had higher TAC than the integrated. Sucrose and glucose levels were higher in organic apples; fructose was cultivar dependent while minor sugars were higher in integrated fruits. The most abundant polyphenolic compound in the peel of the tested cultivars was quercetin 3-O-galactoside, while chlorogenic acid was most abundant in the pulp. Regarding polyphenols, phloretin, phloridzin, protocatechuic acid, baicalein and naringenin were higher in organic apple, while quercetin 3-O-galactoside, kaempferol 3-O-glucoside, chlorogenic acid and syringic acid was higher in integrated fruits. In conclusion, organic ‘Discovery’ and integrated ‘Red Aroma Orelind’ had higher bioavailability of health related compounds from the peel and the pulp.
Collapse
|
10
|
Value-Added Products from Agro-Food Residues. Foods 2022; 11:foods11050766. [PMID: 35267399 PMCID: PMC8909762 DOI: 10.3390/foods11050766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 02/26/2022] [Indexed: 12/12/2022] Open
|