1
|
Li J, Shen J, Ye W, Tang X, Wang Z, Geng M, Liu Y, Chen X, Zhou L. Dynamically metabolic engineering overflow metabolism for efficient production of l-alanine in Escherichia coli. BIORESOURCE TECHNOLOGY 2025; 428:132446. [PMID: 40139466 DOI: 10.1016/j.biortech.2025.132446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 02/20/2025] [Accepted: 03/23/2025] [Indexed: 03/29/2025]
Abstract
l-Alanine, a key chiral amino acid with broad industrial applications, was previously synthesized via thermal-regulated fermentation using an engineered Escherichia coli B0016-060BC. Upon thermal induction optimization, this strain achieved 167.7 g/L l-alanine from glucose. A scarless genome editing system integrating sacB and tetA enabled deletion of the phosphotransacetylase gene (eutD), reducing acetate accumulation by 26.3 %. Dynamic control of glycolysis mediated by pyruvate-sensing minimized overflow metabolism with 87.9 % lower pyruvate, 67.4 % lower acetate, and substantially reduced byproducts derived from the tricarboxylic acid (TCA) cycle. Further attenuation of the TCA cycle via a degradation tag fused to pyruvate dehydrogenase decreased TCA-derived byproducts. The final strain B0016-090BC produced 195.2 g/L l-alanine with a yield of 88.6 g/100 g glucose and productivity of 3.07 g/L/h. This systematic metabolic engineering strategy significantly enhanced l-alanine production efficiency and purity, which was helpful to improve large-scale fermentation of l-alanine.
Collapse
Affiliation(s)
- Jinyang Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, PR China
| | - Jiawen Shen
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, PR China
| | - Wuyue Ye
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, PR China
| | - Xinyan Tang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, PR China
| | - Zhiyu Wang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, PR China
| | - Muyun Geng
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, PR China
| | - Yunye Liu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, PR China
| | - Xianzhong Chen
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, PR China
| | - Li Zhou
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, PR China.
| |
Collapse
|
2
|
Hädrich M, Scheuchenegger C, Vital ST, Gunkel C, Müller S, Hoff J, Borger J, Glawischnig E, Thoma F, Blombach B. Low-biomass pyruvate production with engineered Vibrio natriegens is accompanied by parapyruvate formation. Microb Cell Fact 2025; 24:73. [PMID: 40148976 PMCID: PMC11951559 DOI: 10.1186/s12934-025-02693-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 03/13/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND Pyruvate is a precursor for various compounds in the chemical, drug, and food industries and is therefore an attractive target molecule for microbial production processes. The fast-growing bacterium Vibrio natriegens excels with its specific substrate uptake rate as an unconventional chassis for industrial biotechnology. Here, we aim to exploit the traits of V. natriegens for pyruvate production in fermentations with low biomass concentrations. RESULTS We inactivated the pyruvate dehydrogenase complex in V. natriegens Δvnp12, which harbors deletions of the prophage regions vnp12. The resulting strain V. natriegens Δvnp12 ΔaceE was unable to grow in minimal medium with glucose unless supplemented with acetate. In shaking flasks, the strain showed a growth rate of 1.16 ± 0.03 h- 1 and produced 4.0 ± 0.3 gPyr L- 1 within 5 h. We optimized the parameters in an aerobic fermentation process and applied a constant maintenance feed of 0.24 gAc h- 1 which resulted in a maximal biomass concentration of only 6.6 ± 0.4 gCDW L- 1 and yielded highly active resting cells with a glucose uptake rate (qS) of 3.5 ± 0.2 gGlc gCDW-1 h- 1. V. natriegens Δvnp12 ΔaceE produced 41.0 ± 1.8 gPyr L- 1 with a volumetric productivity of 4.1 ± 0.2 gPyr L- 1 h- 1. Carbon balancing disclosed a gap of 30%, which we identified partly as parapyruvate. Deletion of ligK encoding the HMG/CHA aldolase in V. natriegens Δvnp12 ΔaceE did not impact biomass formation but plasmid-based overexpression of ligK negatively affected growth and led to a 3-fold higher parapyruvate concentration in the culture broth. Notably, we also identified parapyruvate in supernatants of a pyruvate-producing Corynebacterium glutamicum strain. Cell-free bioreactor experiments mimicking the biological process also resulted in parapyruvate formation, pointing to a chemical reaction contributing to its synthesis. CONCLUSIONS We engineered metabolically highly active resting cells of V. natriegens producing pyruvate with high productivity at a low biomass concentration. However, we also found that pyruvate production is accompanied by parapyruvate formation in V. natriegens as well as in a pyruvate producing C. glutamicum strain. Parapyruvate formation seems to be a result of chemical pyruvate conversion and might be supported biochemically by an aldolase reaction.
Collapse
Affiliation(s)
- Maurice Hädrich
- Microbial Biotechnology, Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Straubing, Germany
- SynBiofoundry@TUM, Technical University of Munich, Straubing, Germany
- Munich Institute of Integrated Materials, Energy and Process Engineering, Technical University of Munich, Garching, Germany
| | - Clarissa Scheuchenegger
- Microbial Biotechnology, Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Straubing, Germany
| | - Sören-Tobias Vital
- Microbial Biotechnology, Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Straubing, Germany
| | - Christoph Gunkel
- Microbial Biotechnology, Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Straubing, Germany
- SynBiofoundry@TUM, Technical University of Munich, Straubing, Germany
| | - Susanne Müller
- Microbial Biotechnology, Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Straubing, Germany
| | - Josef Hoff
- Microbial Biotechnology, Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Straubing, Germany
- SynBiofoundry@TUM, Technical University of Munich, Straubing, Germany
- Munich Institute of Integrated Materials, Energy and Process Engineering, Technical University of Munich, Garching, Germany
| | - Jennifer Borger
- Microbial Biotechnology, Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Straubing, Germany
| | - Erich Glawischnig
- Microbial Biotechnology, Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Straubing, Germany
| | - Felix Thoma
- Microbial Biotechnology, Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Straubing, Germany
| | - Bastian Blombach
- Microbial Biotechnology, Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Straubing, Germany.
- SynBiofoundry@TUM, Technical University of Munich, Straubing, Germany.
- Munich Institute of Integrated Materials, Energy and Process Engineering, Technical University of Munich, Garching, Germany.
| |
Collapse
|
3
|
Naeem M, Hao S, Chu M, Zhang X, Huang X, Wang J, He G, Zhao B, Ju J. Efficient biosynthesis of D/L-alanine in the recombinant Escherichia coli BL21(DE3) by biobrick approach. Front Bioeng Biotechnol 2024; 12:1421167. [PMID: 39188373 PMCID: PMC11345225 DOI: 10.3389/fbioe.2024.1421167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 07/26/2024] [Indexed: 08/28/2024] Open
Abstract
Alanine is the most abundant chiral amino acid that exists into the D-alanine or L-alanine forms with diverse applications in the biomedical, pharmaceutical, plastics, and food industries. D/L-alanine production can be carried out through chemical, microbial fermentation, and biocatalytic methods and not much effective due to complicated processes or purification issues and is still challenging to achieve a higher yield. In the present study, biobrick method was utilized for efficient production of D/L-alanine in the recombinant Escherichia coli BL21(DE3) with tandem three-gene co-expression plasmid. Firstly, the co-expression plasmid pET-22bNS-DadX-Ald-Gdh containing three genes, alanine dehydrogenase (ald), alanine racemase (dadX), and glucose dehydrogenase (gdh) from Bacillus pseudofirmus OF4 were successfully constructed and introduced into the E. coli BL21(DE3) strain. Then, under optimized conditions in the whole-cell biocatalytic reaction [20 mM Na2CO3-NaHCO3 (pH 10.1), 200 mM D-glucose, 200 mM sodium pyruvate, and 200 mM ammonium chloride], the concentration of D-alanine and L-alanine reached the maximum value (6.48 g/L and 7.05 g/L) after 3.0 h reaction time at 37°C under 180 rpm rotation. Meanwhile, promoter replacement experiments and Western blot analysis revealed that the expression level of protein OF4Ald had a significant effect on the production of D/L-alanine, indicating that alanine dehydrogenase might be the rate-limiting enzyme for D/L-alanine synthesis. This study provides a simple, feasible, and efficient biosynthesis process of D/L-alanine, which could explore emerging applications for large-scale production of industrial bioproducts.
Collapse
Affiliation(s)
- Muhammad Naeem
- College of Life Science, Hebei Normal University, Shijiazhuang, China
| | - Shimiao Hao
- College of Life Science, Hebei Normal University, Shijiazhuang, China
- Hebei Collaborative Innovation Center for Eco-Environment, Shijiazhuang, China
| | - Mengqiu Chu
- College of Life Science, Hebei Normal University, Shijiazhuang, China
| | - Xuan Zhang
- College of Life Science, Hebei Normal University, Shijiazhuang, China
| | - Xinyan Huang
- College of Life Science, Hebei Normal University, Shijiazhuang, China
| | - Jiaying Wang
- College of Life Science, Hebei Normal University, Shijiazhuang, China
| | - Guangzheng He
- College of Life Science, Hebei Normal University, Shijiazhuang, China
| | - Baohua Zhao
- College of Life Science, Hebei Normal University, Shijiazhuang, China
| | - Jiansong Ju
- College of Life Science, Hebei Normal University, Shijiazhuang, China
- Hebei Collaborative Innovation Center for Eco-Environment, Shijiazhuang, China
| |
Collapse
|
4
|
Starkutė V, Mockus E, Klupšaitė D, Zokaitytė E, Tušas S, Mišeikienė R, Stankevičius R, Rocha JM, Bartkienė E. RETRACTED: Ascertaining the Influence of Lacto-Fermentation on Changes in Bovine Colostrum Amino and Fatty Acid Profiles. Animals (Basel) 2023; 13:3154. [PMID: 37835761 PMCID: PMC10571792 DOI: 10.3390/ani13193154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/26/2023] [Accepted: 10/07/2023] [Indexed: 10/15/2023] Open
Abstract
The aim of this study was to collect samples of bovine colostrum (BCOL) from different sources (agricultural companies A, B, C, D and E) in Lithuania and to ascertain the influence of lacto-fermentation with Lactiplantibacillus plantarum strain 135 and Lacticaseibacillus paracasei strain 244 on the changes in bovine colostrum amino (AA), biogenic amine (BA), and fatty acid (FA) profiles. It was established that the source of the bovine colostrum, the used LAB, and their interaction had significant effects (p < 0.05) on AA contents; lactic acid bacteria (LAB) used for fermentation was a significant factor for aspartic acid, threonine, glycine, alanine, methionine, phenylalanine, lysine, histidine, and tyrosine; and these factor's interaction is significant on most of the detected AA concentrations. Total BA content showed significant correlations with glutamic acid, serine, aspartic acid, valine, methionine, phenylalanine, histidine, and gamma amino-butyric acid content in bovine colostrum. Despite the differences in individual FA contents in bovine colostrum, significant differences were not found in total saturated (SFA), monounsaturated (MUFA), and polyunsaturated (PUFA) fatty acids. Finally, the utilization of bovine colostrum proved to be challenging because of the variability on its composition. These results suggest that processing bovine colostrum into value-added formulations for human consumption requires the adjustment of its composition since the primary production stage. Consequently, animal rearing should be considered in the employed bovine colostrum processing technologies.
Collapse
Affiliation(s)
- Vytautė Starkutė
- Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Tilzes St. 18, LT-47181 Kaunas, Lithuania; (V.S.); (S.T.); (R.M.)
- Department of Food Safety and Quality, Lithuanian University of Health Sciences, Tilzes St. 18, LT-47181 Kaunas, Lithuania
| | - Ernestas Mockus
- Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Tilzes St. 18, LT-47181 Kaunas, Lithuania; (V.S.); (S.T.); (R.M.)
| | - Dovilė Klupšaitė
- Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Tilzes St. 18, LT-47181 Kaunas, Lithuania; (V.S.); (S.T.); (R.M.)
| | - Eglė Zokaitytė
- Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Tilzes St. 18, LT-47181 Kaunas, Lithuania; (V.S.); (S.T.); (R.M.)
| | - Saulius Tušas
- Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Tilzes St. 18, LT-47181 Kaunas, Lithuania; (V.S.); (S.T.); (R.M.)
| | - Ramutė Mišeikienė
- Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Tilzes St. 18, LT-47181 Kaunas, Lithuania; (V.S.); (S.T.); (R.M.)
| | - Rolandas Stankevičius
- Department of Animal Nutrition, Lithuanian University of Health Sciences, Tilzes St. 18, LT-47181 Kaunas, Lithuania
| | - João Miguel Rocha
- Universidade Católica Portuguesa, CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
- Laboratory for Process Engineering, Environment, Biotechnology and Energy (LEPABE), Faculty of Engineering, University of Porto (FEUP), Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
- Associate Laboratory in Chemical Engineering (ALiCE), Faculty of Engineering, University of Porto (FEUP), Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
| | - Elena Bartkienė
- Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Tilzes St. 18, LT-47181 Kaunas, Lithuania; (V.S.); (S.T.); (R.M.)
- Department of Food Safety and Quality, Lithuanian University of Health Sciences, Tilzes St. 18, LT-47181 Kaunas, Lithuania
| |
Collapse
|
5
|
Kaur B, Kumar B, Sirhindi G, Guleria N, Kaur J. Phenolic Biotransformations in Wheatgrass Juice after Primary and Secondary Fermentation. Foods 2023; 12:foods12081624. [PMID: 37107419 PMCID: PMC10138189 DOI: 10.3390/foods12081624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/13/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023] Open
Abstract
Fermented wheatgrass juice was prepared using a two-stage fermentation process by employing Saccharomyces cerevisiae and recombinant Pediococcus acidilactici BD16 (alaD+). During fermentation, a reddish-brown hue appeared in wheatgrass juice due to production of different types of red pigments. The fermented wheatgrass juice has considerably higher content of anthocyanins, total phenols and beta-carotenes as compared to unfermented wheatgrass juice. It has low ethanol content, which might be ascribed to the presence of certain phytolignans in wheatgrass juice. Several yeast-mediated phenolic transformations (such as bioconversion of coumaric acid, hydroxybenzoic acid, hydroxycinnamic acid and quinic acid into respective derivatives; glycosylation and prenylation of flavonoids; glycosylation of lignans; sulphonation of phenols; synthesis of carotenoids, diarylnonanoids, flavanones, stilbenes, steroids, quinolones, di- and tri-terpenoids and tannin) were identified in fermented wheatgrass juice using an untargeted liquid chromatography (LC)-mass spectrometry (MS)-matrix-assisted laser desorption/ionization (MALDI)-time-of-flight (TOF)/time-of-flight (TOF) technique. The recombinant P. acidilactici BD16 (alaD+) also supported flavonoid and lignin glycosylation; benzoic acid, hydroxycoumaric acid and quinic acid derivatization; and synthesis of anthraquinones, sterols and triterpenes with therapeutic benefits. The information presented in this manuscript may be utilized to elucidate the importance of Saccharomyces cerevisiae and P. acidilactici BD16 (alaD+) mediated phenolic biotransformations in developing functional food supplements such as fermented wheatgrass juice.
Collapse
Affiliation(s)
- Baljinder Kaur
- Systems Biology Laboratory, Department of Biotechnology and Food Technology, Punjabi University, Patiala 147002, Punjab, India
| | - Balvir Kumar
- Department of Biotechnology, University Institute of Biotechnology, Chandigarh University, Mohali 140413, Punjab, India
| | - Geetika Sirhindi
- Department of Botany, Punjabi University, Patiala 147002, Punjab, India
| | - Nidhi Guleria
- Department of Biotechnology and Food Technology, Punjabi University, Patiala 147002, Punjab, India
| | - Jashandeep Kaur
- Department of Biotechnology and Food Technology, Punjabi University, Patiala 147002, Punjab, India
| |
Collapse
|
6
|
Biotechnology Approaches in Food Preservation and Food Safety. Foods 2022; 11:foods11101391. [PMID: 35626961 PMCID: PMC9142032 DOI: 10.3390/foods11101391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 05/07/2022] [Indexed: 02/01/2023] Open
|
7
|
Meng W, Ma C, Xu P, Gao C. Biotechnological production of chiral acetoin. Trends Biotechnol 2022; 40:958-973. [DOI: 10.1016/j.tibtech.2022.01.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 01/13/2022] [Accepted: 01/13/2022] [Indexed: 11/28/2022]
|
8
|
Sharma A, Noda M, Sugiyama M, Kaur B, Ahmad A. Optimization of L-alanine production in the recombinant Pediococcus acidilactici BD16 (alaD+). Biochem Eng J 2022. [DOI: 10.1016/j.bej.2021.108241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Sharma A, Noda M, Sugiyama M, Kumar B, Kaur B. Application of Pediococcus acidilactici BD16 ( alaD +) expressing L-alanine dehydrogenase enzyme as a starter culture candidate for secondary wine fermentation. BIOTECHNOL BIOTEC EQ 2021. [DOI: 10.1080/13102818.2021.1995496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Anshula Sharma
- Systems Biology Laboratory, Department of Biotechnology, Punjabi University, Patiala, Punjab, India
| | - Masafumi Noda
- Department of Molecular Microbiology and Biotechnology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Minami-ku, Hiroshima, Japan
| | - Masanori Sugiyama
- Department of Molecular Microbiology and Biotechnology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Minami-ku, Hiroshima, Japan
| | - Balvir Kumar
- Department of Biotechnology, University Institute of Biotechnology, Chandigarh University, Mohali, Punjab, India
| | - Baljinder Kaur
- Systems Biology Laboratory, Department of Biotechnology, Punjabi University, Patiala, Punjab, India
| |
Collapse
|