1
|
Fanesi B, Ismaiel L, Nartea A, Orhotohwo OL, Kuhalskaya A, Pacetti D, Lucci P, Falcone PM. Bioactives and Technological Quality of Functional Biscuits Containing Flour and Liquid Extracts from Broccoli By-Products. Antioxidants (Basel) 2023; 12:2115. [PMID: 38136234 PMCID: PMC10740713 DOI: 10.3390/antiox12122115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/06/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Broccoli by-products are an important source of health-promoting bioactive compounds, although they are generally underutilized. This study aimed to valorize non-compliant broccoli florets by transforming them into functional ingredients for biscuit formulation. A broccoli flour and three water/ethanol extracts (100:0, 75:25, 50:50; v/v) were obtained. The rheological properties and the content of bioactive compounds of the functional ingredients and biscuits were evaluated. The 50:50 hydroalcoholic extract was the richest in glucosinolates (9749 µg·g-1 DW); however, the addition of a small amount strongly affected dough workability. The enrichment with 10% broccoli flour resulted the best formulation in terms of workability and color compared to the other enriched biscuits. The food matrix also contributed to protecting bioactive compounds from thermal degradation, leading to the highest total glucosinolate (33 µg·g-1 DW), carotenoid (46 µg·g-1 DW), and phenol (1.9 mg GAE·g-1 DW) contents being present in the final biscuit. Therefore, broccoli flour is a promising ingredient for innovative healthy bakery goods. Hydroalcoholic extracts could be valuable ingredients for liquid or semi-solid food formulation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Paolo Lucci
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy; (B.F.); (L.I.); (A.N.); (O.L.O.); (A.K.); (D.P.); (P.M.F.)
| | | |
Collapse
|
2
|
Nartea A, Fanesi B, Pacetti D, Lenti L, Fiorini D, Lucci P, Frega NG, Falcone PM. Cauliflower by-products as functional ingredient in bakery foods: Fortification of pizza with glucosinolates, carotenoids and phytosterols. Curr Res Food Sci 2023; 6:100437. [PMID: 36691589 PMCID: PMC9860266 DOI: 10.1016/j.crfs.2023.100437] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/07/2023] Open
Abstract
Industrial cauliflower by-products still represent a no-value food waste, even though they are rich in bioactive compounds. With the aim of valorizing them, optimized special flours rich in glucobrassicin, lutein, β-carotene, and β-sitosterol obtained from leaves, orange and violet stalks were used at 10 and 30% w/w in the formulation of functional leavened bakery. For the first time, the effect of bioactive compounds enrichment in pizza products as well as the rheological properties were evaluated. As results, pizza making process affected the recovery of the bioactive compounds. The recovery of glucobrassicin and carotenoids in pizza depended on the aerial part of cauliflower. Pizza with violet stalks was the richest in glucobrassicin, providing 8.4 mg per portion (200 g). Pizza with leaves showed the highest carotenoid content with a 90% of recovery rate while pizza with orange stalks provided up to 5.8% of the phytosterols health claim requirement. All 10% enriched pizzas revealed viscoelastic and springiness properties similar to the control, contrary to 30% fortification level. Therefore, the use of 10% special flour in pizza should meet both technological industrial processing and consumer acceptance. Orange stalks are the most promising ingredients for high levels of fortification in pizzas.
Collapse
Affiliation(s)
- Ancuta Nartea
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università Politecnica delle Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Benedetta Fanesi
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università Politecnica delle Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Deborah Pacetti
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università Politecnica delle Marche, Via Brecce Bianche, 60131, Ancona, Italy
- Corresponding author.
| | - Lucia Lenti
- School of Science and Technology, Chemistry Division, University of Camerino, V. S. Agostino 1, I-62032, Camerino, MC, Italy
| | - Dennis Fiorini
- School of Science and Technology, Chemistry Division, University of Camerino, V. S. Agostino 1, I-62032, Camerino, MC, Italy
| | - Paolo Lucci
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università Politecnica delle Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Natale G. Frega
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università Politecnica delle Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Pasquale M. Falcone
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università Politecnica delle Marche, Via Brecce Bianche, 60131, Ancona, Italy
| |
Collapse
|
3
|
Nartea A, Fanesi B, Giardinieri A, Campmajó G, Lucci P, Saurina J, Pacetti D, Fiorini D, Frega NG, Núñez O. Glucosinolates and Polyphenols of Colored Cauliflower as Chemical Discriminants Based on Cooking Procedures. Foods 2022; 11:foods11193041. [PMID: 36230116 PMCID: PMC9563729 DOI: 10.3390/foods11193041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 11/29/2022] Open
Abstract
The impact of mild oven treatments (steaming or sous-vide) and boiling for 10 min, 25 min, or 40 min on health-promoting phytochemicals in orange and violet cauliflower (Brassica oleracea L. var. botrytis) was investigated. For this purpose, targeted ultra-high performance liquid chromatography–high-resolution mass spectrometry analysis of phenolics and glycosylates, combined with chemometrics, was employed. Regardless of cooking time, clear differentiation of cooked samples obtained using different procedures was achieved, thus demonstrating the distinct impact of cooking approaches on sample phytochemical profile (both, compound distribution and content). The main responsible components for the observed discrimination were derivatives of hydroxycinnamic acid and kaempferol, organic acids, indolic, and aromatic glucosinolates, with glucosativin that was found, for the first time, as a discriminant chemical descriptor in colored cauliflower submitted to steaming and sous-vide. The obtained findings also highlighted a strict relationship between the impact of the cooking technique used and the type of cauliflower. The boiling process significantly affected the phytochemicals in violet cauliflower whereas orange cauliflower boiled samples were grouped between raw and either steamed or sous-vide-cooked samples. Finally, the results confirm that the proposed methodology is capable of discriminating cauliflower samples based on their phytochemical profiles and identifying the cooking procedure able to preserve bioactive constituents.
Collapse
Affiliation(s)
- Ancuta Nartea
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche, 60131 Ancona, Italy
| | - Benedetta Fanesi
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche, 60131 Ancona, Italy
| | - Alessandra Giardinieri
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche, 60131 Ancona, Italy
| | - Guillem Campmajó
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
- Research Institute in Food Nutrition and Food Safety, University of Barcelona, Av. Prat de la Riba 171, Edifici Recerca (Gaudí), 08901 Santa Coloma de Gramenet, Spain
| | - Paolo Lucci
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche, 60131 Ancona, Italy
| | - Javier Saurina
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
- Research Institute in Food Nutrition and Food Safety, University of Barcelona, Av. Prat de la Riba 171, Edifici Recerca (Gaudí), 08901 Santa Coloma de Gramenet, Spain
| | - Deborah Pacetti
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche, 60131 Ancona, Italy
- Correspondence:
| | - Dennis Fiorini
- Chemistry Division, School of Science and Technology, University of Camerino, V. S. Agostino 1, Camerino, 62032 Macerata, Italy
| | - Natale Giuseppe Frega
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche, 60131 Ancona, Italy
| | - Oscar Núñez
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
- Research Institute in Food Nutrition and Food Safety, University of Barcelona, Av. Prat de la Riba 171, Edifici Recerca (Gaudí), 08901 Santa Coloma de Gramenet, Spain
| |
Collapse
|
5
|
Chinenye NM, James E, Jude M, Nneoma O. Thermal softening kinetics of African Black Olive fruit: Influence of temperature and water absorption on the thermal maceration dynamics and thermophysical properties. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.17021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Ndukwu Macmanus Chinenye
- Department of Agricultural and Bio‐resources Engineering Michael Okpara University of Agriculture Umuahia Nigeria
| | - Ehiem James
- Department of Agricultural and Bio‐resources Engineering Michael Okpara University of Agriculture Umuahia Nigeria
| | - Mbanasor Jude
- Department of Agribusiness Michael Okpara University of Agriculture Umuahia Nigeria
| | - Obasi Nneoma
- Department of food science and Technology Michael Okpara University of Agriculture Umuahia Nigeria
| |
Collapse
|
6
|
Onyeaka DH, Nwaizu CC, Ekaette I. Mathematical modeling for thermally treated vacuum-packaged foods: A review on sous vide processing. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|