1
|
Chuensun T, Chewonarin T, Laopajon W, Samakradhamrongthai RS, Chaisan W, Utama-Ang N. Evaluation of the phytochemical, bioactive compounds and descriptive sensory of encapsulated lingzhi ( Ganoderma lucidum) extracts with combined wall materials for masking effect on the perception of off-flavour and bitterness. Heliyon 2024; 10:e40094. [PMID: 39559201 PMCID: PMC11570458 DOI: 10.1016/j.heliyon.2024.e40094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/24/2024] [Accepted: 11/01/2024] [Indexed: 11/20/2024] Open
Abstract
Lingzhi mushroom (Ganoderma lucidum) is known as a medicinal mushroom that can be utilized in various functional foods available in the market, including powders, dietary supplements, and tea. However, its use is limited due to factors such as bitterness, flavour, and astringency. The objective of this study is to characterize and quantify the sensory profile of Lingzhi mushroom samples (fresh, dried and Lingzhi extracts) using quantitative descriptive analysis and investigate the physicochemical and sensory properties of encapsulated Lingzhi extracts using different ratios of wall material (maltodextrin, gum Arabic and modified starch from rice flour). The optimal ratio for encapsulation involved 32.75 % maltodextrin, 42.25 % gum Arabic, and 25 % modified starch w/w. Three parallel experiments were performed under practical conditions, resulting in average encapsulation efficiencies of 88.39 ± 0.09 % for flavonoids 89.53 ± 0.06 % for polysaccharides and 0.31 ± 0.01 of water activity. The sensory descriptive analysis indicated the following ratings: brown sugar aroma (4.36 ± 0.17), earthy aroma (22.04 ± 0.12), nutty aroma (2.00 ± 0.01), fresh mushroom aroma (11.18 ± 0.19), dried Lingzhi aroma (3.08 ± 0.13), black tea aroma (4.50 ± 0.19), salty taste (1.00 ± 0.01), earthy flavour (23.14 ± 0.22) and Mushroomy (after taste) (2.06 ± 0.09), respectively. The flavour identified of Lingzhi extracts and encapsulated by gas chromatography electronic nose (GC-E-Nose). The result showed ten flavour compounds (Acetaldehyde, Methanethiol, Propanal, propane-2-one, Methyl acetate, 2-methyl propanal, Ethyl Acetate, Heptane, 1-Butanamine, 2-methyl butanal, Thiophene). Optimizing the encapsulation conditions has a significant impact on reducing off-flavours and bitterness. Comparing the flavour profiles of Lingzhi extracts with encapsulated Lingzhi extracts using gas chromatography electronic nose (GC-E-Nose). Encapsulation technology represents a burgeoning field that holds immense potential in ensuring the stability of functional ingredients and facilitating their incorporation into instant beverage products.
Collapse
Affiliation(s)
- Threethip Chuensun
- Division of Product Development Technology, Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
| | - Teera Chewonarin
- Department of Biochemistry, Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Witida Laopajon
- Department of Medical Technology, Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | | | - Worrapob Chaisan
- Division of Product Development Technology, Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
| | - Niramon Utama-Ang
- Division of Product Development Technology, Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
2
|
De Oliveira Campos A, Harrison MD, Marshall DL, Strong PJ. Distributions of Lanostene-Derived Triterpenoids and Glucan Content in the Fruiting Bodies of the Australian Ganoderma Species. J Fungi (Basel) 2024; 10:723. [PMID: 39452675 PMCID: PMC11509325 DOI: 10.3390/jof10100723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/12/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024] Open
Abstract
Lanostene-derived triterpenoids and β-glucans are important metabolites in Ganoderma mushrooms associated with benefits to human health. The medicinal value of the Australian Ganoderma species remains unclear, with no data on triterpenoid distribution or glucan content. In the present study, 22 Australian Ganoderma specimens were analyzed for triterpenoid and glucan contents. Thirty-two triterpenoids were identified in the fruiting bodies of 19 of the specimens. Distinct patterns in triterpenoid distribution between laccate and matte fruiting bodies were observed, leading to the classification of four groups of Ganoderma. Most of the glucans in the Ganoderma fruiting bodies were β-glucans (~99%), with a nominal α-glucan content (~1%). The β-glucan content ranged from 19.5 to 43.5% (w/w). A range of antioxidant activities was observed for methanol extracts using the ABTS (1.8 to 8.4 mg GAE.g-1), DPPH (1.7 to 9.4 mg GAE/g-1) and FRAP (24.7 to 111.6 mmol FeSO4.g-1) assays, with four specimens presenting relatively high radical scavenging and reducing activities. For the first time, we demonstrated that Australian Ganoderma mushrooms contain medicinal triterpenoids, including ganoderic acid A, and we established a link between its distribution and the fruiting body morphology. However, further research is required to isolate diploid clones and determine factors that impact triterpenoid and glucan synthesis in these strains.
Collapse
Affiliation(s)
- Aline De Oliveira Campos
- Center for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane 4000, Australia; (A.D.O.C.); (M.D.H.)
- School of Biology and Environmental Science, Queensland University of Technology, Brisbane 4000, Australia
| | - Mark D. Harrison
- Center for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane 4000, Australia; (A.D.O.C.); (M.D.H.)
- School of Mechanical, Medical, and Process Engineering, Queensland University of Technology, Brisbane 4000, Australia
| | - David L. Marshall
- Central Analytical Research Facility, Queensland University of Technology, Brisbane 4000, Australia;
| | - Peter James Strong
- Center for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane 4000, Australia; (A.D.O.C.); (M.D.H.)
- School of Biology and Environmental Science, Queensland University of Technology, Brisbane 4000, Australia
| |
Collapse
|
3
|
Oliveira-Junior SD, Silva GL, Pessoa VA, Vasconcelos AS, Silva DF, Soares LBN, Chevreuil LR, Santos ES, Sales-Campos C. Adding-value to Ganoderma lingzhi by producing enzymes and antioxidant compounds under submerged fermentation using different culture media. BRAZ J BIOL 2024; 84:e283882. [PMID: 39383366 DOI: 10.1590/1519-6984.283882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 08/20/2024] [Indexed: 10/11/2024] Open
Abstract
Ganoderma lingzhi is widely reported for its medicinal properties, presenting several bioactive substances with potential pharmaceutical and industrial application. This study aimed to evaluate the production of mycelial biomass, extracellular enzymes and antioxidant compounds by G. lingzhi under submerged fermentation. G. lingzhi was cultured in Polysaccharide (POL) and Melin-Norkrans (MNM) media for 7 days. The cellulases, xylanases, pectinases, laccases, and proteases activities were quantified in the culture broth, while the antioxidant potential was evaluated for the mycelial biomass. G. lingzhi showed higher biomass production in MNM. However, it exhibited similar microstructural characteristics in both culture media. In the POL there was greater activity of CMCase (0.229 U/mL), xylanase (0.780 U/mL), pectinase (0.447 U/mL) and proteases (16.13 U/mL). FPase did not differ (0.01 U/mL), and laccase was detected only in MNM (0.122 U/mL). The biomass water extract from MNM showed high levels of phenolic compounds (951.97 mg AGE/100 g). DPPH• inhibition (90.55%) and reducing power (0.456) were higher in MNM medium, while ABTS•+ inhibition (99.95%) and chelating ability (54.86%) were higher in POL. Thus, the MNM medium was more favorable to the production of mycelial biomass and phenolic compounds, while the POL medium favored the synthesis and excretion of hydrolytic enzymes.
Collapse
Affiliation(s)
- S D Oliveira-Junior
- Instituto Nacional de Pesquisas da Amazônia - INPA, Laboratório de Cultivo de Fungos Comestíveis - LCFC, Manaus, AM, Brasil
| | - G L Silva
- Instituto Nacional de Pesquisas da Amazônia - INPA, Laboratório de Cultivo de Fungos Comestíveis - LCFC, Manaus, AM, Brasil
- Universidade Federal do Amazonas - UFAM, Programa de Pós-Graduação em Biotecnologia - PPGBIOTEC, Manaus, AM, Brasil
| | - V A Pessoa
- Instituto Nacional de Pesquisas da Amazônia - INPA, Laboratório de Cultivo de Fungos Comestíveis - LCFC, Manaus, AM, Brasil
- Universidade Federal do Amazonas - UFAM, Programa de Pós-Graduação em Biotecnologia - PPGBIOTEC, Manaus, AM, Brasil
| | - A S Vasconcelos
- Instituto Nacional de Pesquisas da Amazônia - INPA, Laboratório de Cultivo de Fungos Comestíveis - LCFC, Manaus, AM, Brasil
- Universidade Federal do Amazonas - UFAM, Programa de Pós-Graduação em Biotecnologia - PPGBIOTEC, Manaus, AM, Brasil
- Universidade do Estado do Amazonas - UEA, Centro Multiusuário para Análise de Fenômenos Biomédicos - CMABio, Manaus, AM, Brasil
| | - D F Silva
- Instituto Nacional de Pesquisas da Amazônia - INPA, Laboratório de Cultivo de Fungos Comestíveis - LCFC, Manaus, AM, Brasil
- Universidade do Estado do Amazonas - UEA, Programa de Pós-Graduação em Biodiversidade e Biotecnologia da rede BIONORTE - PPGBIONORTE, Manaus, AM, Brasil
| | - L B N Soares
- Instituto Nacional de Pesquisas da Amazônia - INPA, Laboratório de Cultivo de Fungos Comestíveis - LCFC, Manaus, AM, Brasil
- Universidade do Estado do Amazonas - UEA, Programa de Pós-Graduação em Biodiversidade e Biotecnologia da rede BIONORTE - PPGBIONORTE, Manaus, AM, Brasil
| | - L R Chevreuil
- Instituto Nacional de Pesquisas da Amazônia - INPA, Laboratório de Cultivo de Fungos Comestíveis - LCFC, Manaus, AM, Brasil
| | - E S Santos
- Universidade Federal do Rio Grande do Norte - UFRN, Laboratório de Engenharia Bioquímica - LEB, Departamento de Engenharia Química - DEQ, Natal, RN, Brasil
| | - C Sales-Campos
- Instituto Nacional de Pesquisas da Amazônia - INPA, Laboratório de Cultivo de Fungos Comestíveis - LCFC, Manaus, AM, Brasil
- Universidade Federal do Amazonas - UFAM, Programa de Pós-Graduação em Biotecnologia - PPGBIOTEC, Manaus, AM, Brasil
- Universidade do Estado do Amazonas - UEA, Programa de Pós-Graduação em Biodiversidade e Biotecnologia da rede BIONORTE - PPGBIONORTE, Manaus, AM, Brasil
| |
Collapse
|
4
|
Łysakowska P, Sobota A, Wirkijowska A, Zarzycki P, Blicharz-Kania A. The Impact of Ganoderma lucidum (Curtis) P. Karst. Supplementation on the Technological, Chemical, and Quality Parameters of Wheat Bread. Foods 2024; 13:3101. [PMID: 39410135 PMCID: PMC11475047 DOI: 10.3390/foods13193101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
This study explores the incorporation of Ganoderma lucidum (Curtis) P. Karst. (Reishi mushroom) into wheat bread to develop a functional food with enhanced nutritional value. Reishi powder was added to bread formulations at levels of 3%, 6%, 9%, and 12% to assess its effects on physicochemical, nutritional, and sensory properties. The 12% Reishi supplementation resulted in a twofold increase in total dietary fibre (from 7.21 g to 17.08 g per 100 g dry matter) and significant (p < 0.05) elevations in mineral content, particularly calcium (68%), iron (32%), and manganese (61.9%). Carbohydrate content decreased markedly by 27%, contributing to a 19.33% reduction in caloric value. Reishi addition improved bread yield and reduced baking losses, enhancing production efficiency. However, higher Reishi levels negatively impacted bread volume, possibly due to interference with gluten network formation. An increase in crumb moisture was observed, contributing to extended freshness. Sensory evaluation revealed that loaves of bread containing up to 6% Reishi were acceptable to consumers, whereas higher levels detrimentally affected flavour and aroma. Therefore, Reishi-enriched bread, particularly with 6% supplementation, presents a promising functional alternative to conventional wheat bread, optimising nutritional benefits while maintaining consumer acceptability.
Collapse
Affiliation(s)
- Paulina Łysakowska
- Department of Engineering and Cereal Technology, Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, Skromna Street, 20-704 Lublin, Poland; (P.Ł.); (A.W.); (P.Z.)
| | - Aldona Sobota
- Department of Engineering and Cereal Technology, Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, Skromna Street, 20-704 Lublin, Poland; (P.Ł.); (A.W.); (P.Z.)
| | - Anna Wirkijowska
- Department of Engineering and Cereal Technology, Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, Skromna Street, 20-704 Lublin, Poland; (P.Ł.); (A.W.); (P.Z.)
| | - Piotr Zarzycki
- Department of Engineering and Cereal Technology, Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, Skromna Street, 20-704 Lublin, Poland; (P.Ł.); (A.W.); (P.Z.)
| | - Agata Blicharz-Kania
- Department of Biological Bases of Food and Feed Technologies, Faculty of Production Engineering, University of Life Sciences in Lublin, Głęboka Street, 20-612 Lublin, Poland;
| |
Collapse
|
5
|
Sharma E, Bairwa R, Lal P, Pattanayak S, Chakrapani K, Poorvasandhya R, Kumar A, Altaf MA, Tiwari RK, Lal MK, Kumar R. Edible mushrooms trending in food: Nutrigenomics, bibliometric, from bench to valuable applications. Heliyon 2024; 10:e36963. [PMID: 39281488 PMCID: PMC11399639 DOI: 10.1016/j.heliyon.2024.e36963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 09/18/2024] Open
Abstract
The worldwide consumption, health-promoting and nutritional properties of mushrooms have been extensively researched over a decade. Although, wide range of edible mushrooms is still unexplored, which can be a valuable source of bioactive compounds in dietary supplements and biopharma industry. Mushrooms represent as dynamic source of nutrients lacking in food from plant or animal origin thus, considered as vital functional food utilized for prevention of numerous diseases. The unique bioactive compounds in mushroom and their anti-inflammatory, anti-tumour and other health attributes have been discussed. The preventive action of mushroom on maintaining the gut health and their property to act as pro, pre or symbiotic is also elucidated. The direct prebiotic activity of mushroom affects gut haemostasis and enhances the gut microbiota. Recent reports on role in improving the brain health and neurological impact by mushroom are mentioned. The role of bioactive components in mushroom with relation to nutrigenomics have been explored. The nutrigenomics has become a crucial tool to assess individuals' diet according its genetic make-up and thus, cure of several diseases. Undeniably, mushroom in present time is regarded as next-generation wonder food, playing crucial role in sustaining health, thus, an active ingredient of food and nutraceutical industries.
Collapse
Affiliation(s)
- Eshita Sharma
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, 143005, India
| | - Rakesh Bairwa
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, India
| | - Priyanka Lal
- Department of Agricultural Economics and Extension, School of Agriculture, Lovely Professional University, Jalandhar GT Road (NH1), Phagwara, India
| | | | - Kota Chakrapani
- Department of Plant Pathology, College of Agriculture, Central Agricultural University, Imphal, India
| | - Rajendra Poorvasandhya
- Department of Plant Pathology, Bidhan Chandra Krishi Vishwavidyalaya, Mohanpur, Nadia District, West Bengal, India
| | - Awadhesh Kumar
- Division of Crop Physiology and Biochemistry, ICAR-National Rice Research Institute, Cuttack, India
| | - Muhammad Ahsan Altaf
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, Sanya Nanfan Research Institute, Hainan University, Sanya, 572025, China
| | - Rahul Kumar Tiwari
- ICAR-Central Potato Research Institute, Shimla, 171001, India
- Division of Crop Protection, ICAR-Indian Institute of Sugarcane Research, Lucknow, 226002, India
| | - Milan Kumar Lal
- Division of Crop Physiology and Biochemistry, ICAR-National Rice Research Institute, Cuttack, India
- ICAR-Central Potato Research Institute, Shimla, 171001, India
| | - Ravinder Kumar
- ICAR-Central Potato Research Institute, Shimla, 171001, India
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| |
Collapse
|
6
|
Zhang L, Khoo CS, Koyyalamudi SR, Reddy N. Immunomodulatory activities of polysaccharides isolated from Amauroderma rugosum (Blume and T. Nees) Torrend and their structural characterization. Heliyon 2024; 10:e31672. [PMID: 38868030 PMCID: PMC11167292 DOI: 10.1016/j.heliyon.2024.e31672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 05/20/2024] [Accepted: 05/20/2024] [Indexed: 06/14/2024] Open
Abstract
Amauroderma rugosum (Blume and T. Nees) Torrend is a traditionally well-known mushroom that is used for the treatment of cancer. In order to evaluate the pharmacological activities of A. rugosum polysaccharides, the mushroom powder was subjected to hot water extraction and pure polysaccharides (ARPs) were isolated by gel-filtration method. Three important APRs called ARP-1, ARP-2 and ARP-5 were identified with average molecular weights of 1494, 450, and 7 kDa respectively. Their antioxidant abilities were estimated by examining free radical scavenging potential against 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid radical (ABTS●+), 2,2-diphenyl-1-picrylhydrazyl radical (DPPH●), and hydroxyl radical. Immunomodulatory potentials of these ARPs were determined using murine macrophage cells. These polysaccharides exhibited high antioxidant abilities and stimulated mouse macrophages leading to the generation of tumour necrosis factor-α (TNF-α) and interleukin-6 (IL-6). Excellent activities were displayed by ARP-1 and APR-2. Gas chromatography and spectroscopic (FT-IR and NMR) methods were employed in order to carry out their structural characterisation. The two high molecular weight ARPs (ARP-1 and ARP-2) displayed β-(1 → 3)-D-glucan backbone structure with branching of β-(1 → 6)-d-glucopyranosyl. These observations suggest high potential of ARPs for immunotherapeutic applications.
Collapse
Affiliation(s)
- Lin Zhang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, 100010, China
- Beijing Institute of Chinese Medicine, Beijing, 100010, China
| | - Cheang Soo Khoo
- Wentworth Institute of Higher Education, 302-306 Elizabeth Street, Surry Hills, NSW, 2010, Australia
| | - Sundar Rao Koyyalamudi
- Institute of Endocrinology and Diabetes, The Children's Hospital at Westmead, Sydney, NSW, 2145, Australia
- Discipline of Pediatrics and Child Health, The Children's Hospital at Westmead, University of Sydney, NSW, 2145, Australia
| | - Narsimha Reddy
- School of Science, Parramatta Campus, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| |
Collapse
|
7
|
Al Qutaibi M, Kagne SR. Exploring the Phytochemical Compositions, Antioxidant Activity, and Nutritional Potentials of Edible and Medicinal Mushrooms. Int J Microbiol 2024; 2024:6660423. [PMID: 38841191 PMCID: PMC11152763 DOI: 10.1155/2024/6660423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 03/22/2024] [Accepted: 05/17/2024] [Indexed: 06/07/2024] Open
Abstract
Mushrooms are a valuable source of food and medicine that have been used for centuries in various cultures. They contain a variety of phytochemicals, such as terpenoids and polysaccharides, that exhibit diverse biological activities, such as antioxidant, anti-inflammatory, anticancer, antimicrobial, immunomodulatory, and antidiabetic effects. However, mushroom's phytochemical composition and bioactivity vary depending on their species, cultivation conditions, processing methods, and extraction techniques. Therefore, using reliable analytical methods and standardized protocols is important for systematically evaluating the quality and quantity of mushroom phytochemicals and their therapeutic potential. This review provides a bibliometric analysis of the recent literature on biological activities, highlights trends in the field, and highlights the countries and journals with the highest contribution. It also discusses the nutritional value of the total content of phenolic and other phytochemicals in some species of mushrooms.
Collapse
Affiliation(s)
- Mohammed Al Qutaibi
- Department of Medical Microbiology, Faculty of Science, Ibb University, Ibb, Yemen
- Department of Microbiology, Badrinarayan Barwale College, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad 431001, India
| | - Suresh R. Kagne
- Department of Microbiology, Badrinarayan Barwale College, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad 431001, India
| |
Collapse
|
8
|
Pleurotus eryngii Chips-Chemical Characterization and Nutritional Value of an Innovative Healthy Snack. Foods 2023; 12:foods12020353. [PMID: 36673445 PMCID: PMC9858173 DOI: 10.3390/foods12020353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
Nowadays, as the pandemic has reshaped snacking behaviors, and consumers have become more health-conscious, the need for the incorporation of "healthy snacking" in our diets has emerged. Although there is no agreed-upon definition of "healthy snacking", dietary guidelines refer to snack foods with high nutritional and biological value. The aim of this study was to chemically characterize and determine the nutritional value of an innovative UVB-irradiated and baked snack from Pleurotus eryngii mushrooms. P. eryngii is an edible mushroom native to the Mediterranean basin. We applied proximate composition, amino acids, fatty acids, vitamins, and macro and trace elements analyses. Also, we computed indices to assess the nutritional quality of food, and we evaluated the sensory characteristics of the mushroom snack. We found high nutritional, consumer, and biological values for the snack. More specifically it was low in calories, high in fibre and protein, low in lipids, without added sugars, and high in ergosterol and beta-glucans. Additionally, it had some vitamins and trace elements in significant quantities. Its NRF9.3 score was considerably high compared to most popular snacks, and the snack exhibited high hypocholesterolemic and low atherogenic and thrombogenic potentials. In conclusion, as a result of UVB-irradiation and baking of P. eryngii mushrooms, the snack's nutritional and biological value were not affected; instead, it provided a "healthy snacking" option.
Collapse
|
9
|
Hattori K, Takagi H, Ogata Y, Yamada T, Horiba H, Fukata K, Sakaida T, Yashiro Y, Hasegawa S, Tanaka H. Immunostimulatory effects of a subcritical water extract of Ganoderma. Biomed Rep 2022; 18:1. [PMID: 36544853 PMCID: PMC9756285 DOI: 10.3892/br.2022.1583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/11/2022] [Indexed: 11/10/2022] Open
Abstract
Ganoderma, a medicinal mushroom with various physiological activities, has been extensively investigated regarding its effectiveness. The aim of the present study was to examine the effects of a subcritical water extract of Ganoderma (SWEG) on the immune system. The use of subcritical water with a higher temperature and pressure than hot water allows efficient elution of components from natural products. As an evaluation of the effectiveness of SWEG, a cell proliferation and a cell differentiation test were carried out using A-6 cells, a model of hematopoietic stem cells. Furthermore, an oral administration test in mice was conducted to examine the effects of SWEG on the number and function of immune cells. As a result, SWEG was revealed to promote both self-renewal and differentiation into immune cells such as T cells and natural killer (NK) cells in experiments with A-6 cells. These results were not obtained in experiments using hot water extract of Ganoderma lucidum and Ganoderma sinense. The oral administration test in mice demonstrated that SWEG increased hematopoietic precursor cells, immature B cells, and NK cells in the bone marrow, and T cells in the thymus. In addition, SWEG enhanced the immune functions in the spleen by promoting granzyme B expression and NK cell activity. SWEG was demonstrated to be a food material that acts on HSCs and regulates immunity in vivo.
Collapse
Affiliation(s)
- Koji Hattori
- Research Laboratories, Nippon Menard Cosmetic Co., Ltd., Nagoya-shi, Aichi 451-0071, Japan
| | - Hiroshi Takagi
- Research Laboratories, Nippon Menard Cosmetic Co., Ltd., Nagoya-shi, Aichi 451-0071, Japan
| | - Yuichiro Ogata
- Research Laboratories, Nippon Menard Cosmetic Co., Ltd., Nagoya-shi, Aichi 451-0071, Japan
| | - Takaaki Yamada
- Research Laboratories, Nippon Menard Cosmetic Co., Ltd., Nagoya-shi, Aichi 451-0071, Japan
| | - Hiroki Horiba
- Research Laboratories, Nippon Menard Cosmetic Co., Ltd., Nagoya-shi, Aichi 451-0071, Japan
| | - Kousuke Fukata
- Research Laboratories, Nippon Menard Cosmetic Co., Ltd., Nagoya-shi, Aichi 451-0071, Japan
| | - Tsutomu Sakaida
- Research Laboratories, Nippon Menard Cosmetic Co., Ltd., Nagoya-shi, Aichi 451-0071, Japan
| | - Youichi Yashiro
- Research Laboratories, Nippon Menard Cosmetic Co., Ltd., Nagoya-shi, Aichi 451-0071, Japan
| | - Seiji Hasegawa
- Research Laboratories, Nippon Menard Cosmetic Co., Ltd., Nagoya-shi, Aichi 451-0071, Japan,Nagoya University-MENARD Collaborative Research Chair, Nagoya University Graduate School of Medicine, Nagoya-shi, Aichi 466-8550, Japan,Correspondence to: Dr Seiji Hasegawa, Research Laboratories, Nippon Menard Cosmetic Co., Ltd., 2-7 Torimi-cho, Nishi-ku, Nagoya-shi, Aichi 451-0071, Japan
| | - Hiroyuki Tanaka
- Laboratory of Immunobiology, Department of Biofunctional Analysis, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| |
Collapse
|
10
|
Gürgen A, Sevindik M. Application of artificial neural network coupling multi objective‐particle swarm optimization algorithm to optimize
Pleurotus ostreatus
extraction parameters. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ayşenur Gürgen
- Karadeniz Technical University Faculty of Forest, Forest Industrial Engineering Trabzon Turkey
| | - Mustafa Sevindik
- Osmaniye Korkut Ata University Department of Food Processing, Bahçe Vocational School Osmaniye Turkey
| |
Collapse
|
11
|
Bhambri A, Srivastava M, Mahale VG, Mahale S, Karn SK. Mushrooms as Potential Sources of Active Metabolites and Medicines. Front Microbiol 2022; 13:837266. [PMID: 35558110 PMCID: PMC9090473 DOI: 10.3389/fmicb.2022.837266] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/15/2022] [Indexed: 12/12/2022] Open
Abstract
Background Mushrooms exist as an integral and vital component of the ecosystem and are very precious fungi. Mushrooms have been traditionally used in herbal medicines for many centuries. Scope and Approach There are a variety of medicinal mushrooms mentioned in the current work such as Agaricus, Amanita, Calocybe, Cantharellus, Cordyceps, Coprinus, Cortinarius, Ganoderma, Grifola, Huitlacoche, Hydnum, Lentinus, Morchella, Pleurotus, Rigidoporus, Tremella, Trametes sp., etc., which play a vital role in various diseases because of several metabolic components and nutritional values. Medicinal mushrooms can be identified morphologically on the basis of their size, color (white, black, yellow, brown, cream, pink and purple-brown, etc.), chemical reactions, consistency of the stalk and cap, mode of attachment of the gills to the stalk, and spore color and mass, and further identified at a molecular level by Internal Transcribed Spacer (ITS) regions of gene sequencing. There are also other methods that have recently begun to be used for the identification of mushrooms such as high-pressure liquid chromatography (HPLC), nuclear magnetic resonance spectroscopy (NMR), microscopy, thin-layer chromatography (TLC), DNA sequencing, gas chromatography-mass spectrometry (GC-MS), chemical finger printing, ultra-performance liquid chromatography (UPLC), fourier transform infrared spectroscopy (FTIR), liquid chromatography quadrupole time-of-flight mass spectrometry (LCMS-TOF) and high-performance thin-layer chromatography (HPTLC). Lately, the matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) technique is also used for the identification of fungi. Key Finding and Conclusion Medicinal mushrooms possess various biological activities like anti-oxidant, anti-cancer, anti-inflammatory, anti-aging, anti-tumor, anti-viral, anti-parasitic, anti-microbial, hepatoprotective, anti-HIV, anti-diabetic, and many others that will be mentioned in this article. This manuscript will provide future direction, action mechanisms, applications, and the recent collective information of medicinal mushrooms. In addition to many unknown metabolites and patented active metabolites are also included.
Collapse
Affiliation(s)
- Anne Bhambri
- Department of Biochemistry and Biotechnology, Sardar Bhagwan Singh University, Dehradun, India
| | | | | | | | - Santosh Kumar Karn
- Department of Biochemistry and Biotechnology, Sardar Bhagwan Singh University, Dehradun, India
| |
Collapse
|
12
|
Sułkowska-Ziaja K, Zengin G, Gunia-Krzyżak A, Popiół J, Szewczyk A, Jaszek M, Rogalski J, Muszyńska B. Bioactivity and Mycochemical Profile of Extracts from Mycelial Cultures of Ganoderma spp. Molecules 2022; 27:275. [PMID: 35011507 PMCID: PMC8746335 DOI: 10.3390/molecules27010275] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 11/17/2022] Open
Abstract
Fungal mycelium cultures are an alternative to natural sources in order to obtain valuable research materials. They also enable constant control and adaptation of the process, thereby leading to increased biomass growth and accumulation of bioactive metabolites. The present study aims to assess the biosynthetic potential of mycelial cultures of six Ganoderma species: G. adspersum, G. applanatum, G. carnosum, G. lucidum, G. pfeifferi, and G. resinaceum. The presence of phenolic acids, amino acids, indole compounds, sterols, and kojic acid in biomass extracts was determined by HPLC. The antioxidant and cytotoxic activities of the extracts and their effects on the inhibition of selected enzymes (tyrosinase and acetylcholinesterase) were also evaluated. The total content of phenolic acids in the extracts ranged from 5.8 (G. carnosum) to 114.07 mg/100 g dry weight (d.w.) (G. pfeifferi). The total content of indole compounds in the extracts ranged from 3.03 (G. carnosum) to 11.56 mg/100 g d.w. (G. lucidum) and that of ergosterol ranged from 28.15 (G. applanatum) to 74.78 mg/100 g d.w. (G. adspersum). Kojic acid was found in the extracts of G. applanatum and G. lucidum. The tested extracts showed significant antioxidant activity. The results suggest that the analyzed mycelial cultures are promising candidates for the development of new dietary supplements or pharmaceutical preparations.
Collapse
Affiliation(s)
- Katarzyna Sułkowska-Ziaja
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Medical College, Jagiellonian University, Medyczna 9, 30-688 Kraków, Poland; (A.S.); (B.M.)
| | - Gokhan Zengin
- Physiology and Biochemistry Research Laboratory, Department of Biology, Science Faculty, Selcuk University, Konya 42130, Turkey;
| | - Agnieszka Gunia-Krzyżak
- Department of Bioorganic Chemistry, Chair of Organic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, 30-688 Kraków, Poland;
| | - Justyna Popiół
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, 30-688 Kraków, Poland;
| | - Agnieszka Szewczyk
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Medical College, Jagiellonian University, Medyczna 9, 30-688 Kraków, Poland; (A.S.); (B.M.)
| | - Magdalena Jaszek
- Department of Biochemistry and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland; (M.J.); (J.R.)
| | - Jerzy Rogalski
- Department of Biochemistry and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland; (M.J.); (J.R.)
| | - Bożena Muszyńska
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Medical College, Jagiellonian University, Medyczna 9, 30-688 Kraków, Poland; (A.S.); (B.M.)
| |
Collapse
|
13
|
Mirmazloum I, Ladányi M, Omran M, Papp V, Ronkainen VP, Pónya Z, Papp I, Némedi E, Kiss A. Co-encapsulation of probiotic Lactobacillus acidophilus and Reishi medicinal mushroom (Ganoderma lingzhi) extract in moist calcium alginate beads. Int J Biol Macromol 2021; 192:461-470. [PMID: 34600952 DOI: 10.1016/j.ijbiomac.2021.09.177] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 09/03/2021] [Accepted: 09/25/2021] [Indexed: 10/20/2022]
Abstract
Probiotic L. acidophilus La-14 cells were co-encapsulated with Ganoderma lingzhi extract to prolong the viability of the cells under simulated gastrointestinal (SGI) condition and to protect the active ingredients of Reishi mushroom during the storage period. Combinations of distinctive reagents (sodium alginate, chitosan, maltose, Hydroxyethyl-cellulose (HEC), hydroxypropyl methylcellulose (HPMC), and calcium lactate) were tested. Optimal double layer Ca-alginate hydrogel beads were fabricated with significantly improved characteristics. The incorporation of maltose significantly decreases the release rate of mushrooms' phenolics, antioxidants, and β-glucan during the storage time. Significant improvement in probiotic cells viability under SGI condition has been found and confirmed by confocal laser microscopy in maltose containing double layer coated calcium alginate beads variants. The encapsulation of newly formulated prebiotic Reishi extract and probiotic L. acidophilus is creating a new potential food application for such medicinal mushrooms and natural products with unpleasant taste upon oral consumption.
Collapse
Affiliation(s)
- Iman Mirmazloum
- Department of Plant Physiology and Plant Ecology, Institute of Agronomy, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary.
| | - Márta Ladányi
- Department of Applied Statistics, Institute of Mathematics and Basic Science, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
| | - Mohammad Omran
- Department of Plant Physiology and Plant Ecology, Institute of Agronomy, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
| | - Viktor Papp
- Department of Botany, Institute of Agronomy, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
| | | | - Zsolt Pónya
- Division of Applied Food Crop Production, Department of Agronomy, Institute of Agronomy, Kaposvár Campus, Hungarian University of Agricultural and Life Sciences, Kaposvár, Hungary
| | - István Papp
- Department of Plant Physiology and Plant Ecology, Institute of Agronomy, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
| | | | - Attila Kiss
- Agro-Food Science Techtransfer and Innovation Centre, Faculty for Agro-, Food- and Environmental Science, Debrecen University, Debrecen, Hungary
| |
Collapse
|