1
|
Zhang S, Geng S, Liang Y, Liu B. Formation mechanism of polyphenol-Tartary buckwheat starch complexes and their Pickering emulsifying capacity. Int J Biol Macromol 2025; 307:142087. [PMID: 40086553 DOI: 10.1016/j.ijbiomac.2025.142087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 03/02/2025] [Accepted: 03/12/2025] [Indexed: 03/16/2025]
Abstract
The complexes of gallic acid (GA), epigallocatechin-3-gallate (EGCG) and tannic acid (TA) with Tartary buckwheat starch (TBS) were prepared using the autoclaving method, and the effects of polyphenol structure on the bound polyphenol amount and the Pickering emulsifying ability of the complexes were evaluated. The molecular structure and size of polyphenols determine their different binding modes and binding amounts with TBS. The semi embedded (partially exposed) binding modes of EGCG have a positive impact on the binding amount and emulsifying capacity. The complexation altered the morphology and crystalline structure of TBS. Molecular docking analysis confirmed that the binding mode of polyphenols to starch significantly influenced the emulsifying capacity of the complexes. EGCG-TBS complexes with contact angle of 90.88° demonstrated optimal efficacy in reducing oil-water interfacial tension. It could stabilize Pickering emulsions with the oil phase volume fractions (φ) of 50 % and 60 % when the concentration (c) was 3.0 %. GA-TBS was difficult to construct stable Pickering emulsions, due to the fully embedded binding mode that is unable to alter the surface hydrophobicity of TBS. While TA-TBS could only stabilize the Pickering emulsions with φ = 50 % and 60 % at c = 4.0 %, due to the lowest binding amount and the inferior emulsifying capacity to TBS. Therefore, the difference in complex structure and binding mode affects the emulsifying performance of Pickering emulsions, which contribute to improve the emulsification theory of polyphenols and proteins.
Collapse
Affiliation(s)
- Shijie Zhang
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Sheng Geng
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Yalong Liang
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Benguo Liu
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China.
| |
Collapse
|
2
|
Wang L, Mao Y, Tang Y, Zhao J, Wang A, Li C, Wu H, Wu Q, Zhao H. Rutin distribution in Tartary buckwheat: Identifying prime dietary sources through comparative analysis of post-processing treatments. Food Chem 2025; 464:141641. [PMID: 39427614 DOI: 10.1016/j.foodchem.2024.141641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 08/06/2024] [Accepted: 10/12/2024] [Indexed: 10/22/2024]
Abstract
Rutin is a crucial bioactive compound that determines the nutritional value of Tartary buckwheat (TB). However, the potential of utilizing TB as a dietary source of rutin for human consumption remains largely unexplored. This study aims to address these knowledge gaps by conducting a detailed analysis of rutin content distribution in TB tissues. Our findings revealed a significant variation in rutin content across different plant tissues. Notably, higher levels of rutin were found in embryos and cotyledons compared to other tissues, highlighting them as the primary sites of rutin accumulation in TB seeds and sprouts. Additional research on the processing of TB showed that sprouts and seeds retain high rutin levels even after boiling, steaming, deep-frying, stir-frying, and popping. Comparative analysis of different TB-derived products confirmed that cooked seeds and sprouts can serve as significant dietary sources of rutin. This study offers a foundational framework for the development of future dietary recommendations and applications of TB.
Collapse
Affiliation(s)
- Lei Wang
- College of Life Science, Sichuan Agricultural University, 625014 Ya'an, Sichuan, China
| | - Yuanbin Mao
- College of Life Science, Sichuan Agricultural University, 625014 Ya'an, Sichuan, China
| | - Yu Tang
- College of Life Science, Sichuan Agricultural University, 625014 Ya'an, Sichuan, China
| | - Jiali Zhao
- College of Life Science, Sichuan Agricultural University, 625014 Ya'an, Sichuan, China
| | - Anhu Wang
- Xichang University, 615013 Xichang, Sichuan, China
| | - Chenglei Li
- College of Life Science, Sichuan Agricultural University, 625014 Ya'an, Sichuan, China
| | - Huala Wu
- College of Life Science, Sichuan Agricultural University, 625014 Ya'an, Sichuan, China
| | - Qi Wu
- College of Life Science, Sichuan Agricultural University, 625014 Ya'an, Sichuan, China
| | - Haixia Zhao
- College of Life Science, Sichuan Agricultural University, 625014 Ya'an, Sichuan, China.
| |
Collapse
|
3
|
Yessembek M, Tarabayev B, Kakimov M, Gajdzik B, Wolniak R, Bembenek M. Utilization of Secondary Raw Materials from Rice and Buckwheat Processing for the Production of Enriched Bread: Optimization of Formulation, Physicochemical and Organoleptic Properties, Structural and Mechanical Properties, and Microbiological Safety. Foods 2024; 13:2678. [PMID: 39272444 PMCID: PMC11394316 DOI: 10.3390/foods13172678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
Pursuing enhanced nutritional value in bakery products through technological advancements and new recipes is a promising facet of the food industry. This study focuses on incorporating rice and buckwheat brans, additional raw materials rich in biologically active substances, into bakery products. Utilizing a second-order rotatable plan, optimal ratios were determined-5% rice bran and 10% buckwheat bran. The application of these brans influenced dough and bread quality, reducing sugar content by 5% in dry form and 29% in the fermented brew, potentially aiding in diabetes prevention and cholesterol control. Introducing brans, especially in fermented brew, positively impacted microbiological stability, reducing the risk of mold and potato disease. The developed bread technology using rice and buckwheat brans in fermented brew significantly increased nutritional value, satisfying adult daily protein needs by 31.2%, fats by 15%, and dietary fibers by 18.4%. This innovative approach ensures a sufficient intake of essential vitamins and minerals, showcasing a promising avenue for creating healthier and more nutritious bakery products.
Collapse
Affiliation(s)
- Madina Yessembek
- The Department of Food Technology and Processing Products, S. Seifullin Kazakh Agrotechnical Research University, Zhenis Avenue 62, Astana 010011, Kazakhstan
| | - Baltash Tarabayev
- The Department of Food Technology and Processing Products, S. Seifullin Kazakh Agrotechnical Research University, Zhenis Avenue 62, Astana 010011, Kazakhstan
| | - Mukhtarbek Kakimov
- The Department of Food Technology and Processing Products, S. Seifullin Kazakh Agrotechnical Research University, Zhenis Avenue 62, Astana 010011, Kazakhstan
| | - Bożena Gajdzik
- Department of Industrial Informatics, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Radosław Wolniak
- Faculty of Organization and Management, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Michał Bembenek
- Faculty of Mechanical Engineering and Robotics, AGH University of Krakow, A. Mickiewicza 30, 30-059 Krakow, Poland
| |
Collapse
|
4
|
Zhang S, Guo C, Liu B. The Effect of Acid Hydrolysis on the Pickering Emulsifying Capacity of Tartary Buckwheat Flour. Foods 2024; 13:1543. [PMID: 38790843 PMCID: PMC11121274 DOI: 10.3390/foods13101543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/07/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
The effect of sulfuric acid hydrolysis on the Pickering emulsifying capacity of Tartary buckwheat flour (TBF) rich in starch was evaluated for the first time. The results indicate that the sulfuric acid concentration and hydrolysis time had a significant impact on the Pickering emulsifying capacity of acid-hydrolyzed Tartary buckwheat flour (HTBF). A low sulfuric acid concentration (1-2 mol/L) could reduce the particle size of HTBF, but it also decreased the Pickering emulsifying ability. At a sulfuric acid concentration of 3 mol/L, appropriate treatment time (2 and 3 days) led to particle aggregation but significantly improved wettability, thereby resulting in a rapid enhancement in emulsifying capacity. Under these conditions, the obtained HTBF (HTBF-D2-C3 and HTBF-D3-C3) could stabilize medium-chain triglyceride (MCT)-based Pickering high-internal-phase emulsions (HIPEs) with an oil-phase volume fraction of 80% at the addition amounts (c) of ≥1.0% and ≥1.5%, respectively. Its performance was significantly superior to that of TBF (c ≥ 2.0%). Furthermore, at the same addition amount, the droplet size of HIPEs constructed by HTBF-D3-C3 was smaller than that of HTBF-D2-C3, and its gel strength and microrheological performance were also superior to those of HTBF-D2-C3, which was attributed to the higher wettability of HTBF-D3-C3. The findings of this study can facilitate the in-depth application of Tartary buckwheat and provide references for the development of novel Pickering emulsifiers.
Collapse
Affiliation(s)
| | | | - Benguo Liu
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China; (S.Z.); (C.G.)
| |
Collapse
|
5
|
Zhou W, Guo S, Zhang S, Lu Z, Sun Z, Ma Y, Shi J, Zhang H. Effects of Siraitia grosvenorii seed flour on the properties and quality of steamed bread. Front Nutr 2023; 10:1249639. [PMID: 37671201 PMCID: PMC10475572 DOI: 10.3389/fnut.2023.1249639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/07/2023] [Indexed: 09/07/2023] Open
Abstract
Siraitia grosvenorii seeds are rich in abundant active compounds beneficial to human health. To clarify the digestion characteristics of Siraitia grosvenorii seed flour (SSF) and promote the use of SSF in the processing of functional staple foods, SSF was prepared, its composition and physicochemical properties were studied, and the processing characteristics of SSF-wheat flour were systematically investigated. The results showed that the torque curve and other parameters of the dough were significantly affected by the amount of SSF added. With the increase of SSF proportion, the water absorption showed an increasing trend, while the degree of protein weakening first weakened and then enhanced. At 20% SSF, the dough was more resistant to kneading. In response to an increase in SSF, the L* value decreased significantly, and the a* and b* values increased gradually, while the specific volume decreased gradually. Additionally, the hardness, adhesiveness, and chewiness of the bread enhanced gradually, while its elasticity, cohesiveness, and resilience decreased gradually. After the addition of 30% SSF, the inner tissue of steamed bread was more delicate. With an increase in SSF proportion, the predicted glycemic index (pGI) of steamed bread weakened markedly. Overall, these results showed that SSF, as a kind of food ingredient with hypoglycemic activity, can be used in the production of new functional steamed bread products. This study provides basic research data for the development of products containing S. grosvenorii seed.
Collapse
Affiliation(s)
- Wei Zhou
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, China
- Key Laboratory of Aquatic Products Processing and Safety Control, Xinxiang, China
- Engineering and Technology Research Center of Aquatic Products Processing and Quality Control, Xinxiang, China
| | - Siyu Guo
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, China
| | - Sheng Zhang
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, China
| | - Zhaodi Lu
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, China
| | - Ziyi Sun
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, China
| | - Yulin Ma
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, China
| | - Jinxiu Shi
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, China
| | - Hao Zhang
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, China
- Engineering and Technology Research Center of Aquatic Products Processing and Quality Control, Xinxiang, China
- Shaanxi Research Institute of Agricultural Products Processing Technology, Xi’an, China
| |
Collapse
|
6
|
Yang Y, Wang X. Effects of coarse cereals on dough and Chinese steamed bread - a review. Front Nutr 2023; 10:1186860. [PMID: 37599688 PMCID: PMC10434817 DOI: 10.3389/fnut.2023.1186860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 07/24/2023] [Indexed: 08/22/2023] Open
Abstract
Chinese steamed breads (CSBs) are long-established staple foods in China. To enhance the nutritional value, coarse cereals such as oats, buckwheat, and quinoa have been added to the formulation for making CSBs. This review presents the nutritional value of various coarse cereals and analyses the interactions between the functional components of coarse cereals in the dough. The addition of coarse cereals leads to changes in the rheological, fermentation, and pasting aging properties of the dough, which further deteriorates the appearance and texture of CSBs. This review can provide some suggestions and guidelines for the production of staple and nutritious staple foods.
Collapse
Affiliation(s)
| | - Xinwei Wang
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| |
Collapse
|
7
|
Noda T, Ishiguro K, Suzuki T, Morishita T. Tartary Buckwheat Bran: A Review of Its Chemical Composition, Processing Methods and Food Uses. PLANTS (BASEL, SWITZERLAND) 2023; 12:1965. [PMID: 37653882 PMCID: PMC10222156 DOI: 10.3390/plants12101965] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/05/2023] [Accepted: 04/26/2023] [Indexed: 09/02/2023]
Abstract
Tartary buckwheat (Fagopyrum tataricum Gaertn.) containing large amounts of functional compounds with antioxidant activity, such as rutin, has attracted substantial research attention due to its industrial applications. Particularly, the functional compounds in Tartary buckwheat bran, an unexploited byproduct of the buckwheat flour milling process, are more concentrated than those in Tartary buckwheat flour. Thus, Tartary buckwheat bran is deemed to be a potential material for making functional foods. However, a review that comprehensively summarizes the research on Tartary buckwheat bran is lacking. Therefore, we highlighted current studies on the chemical composition of Tartary buckwheat bran. Moreover, the processing method and food uses of Tartary buckwheat bran are also discussed.
Collapse
Affiliation(s)
- Takahiro Noda
- Hokkaido Agricultural Research Center, National Agriculture and Food Research Organization, Shinsei, Memuro, Kasai-gun 082-0081, Japan
| | - Koji Ishiguro
- Hokkaido Agricultural Research Center, National Agriculture and Food Research Organization, Shinsei, Memuro, Kasai-gun 082-0081, Japan
| | - Tatsuro Suzuki
- Kyushu-Okinawa Agricultural Research Center, National Agriculture and Food Research Organization, Suya, Koshi, Kumamoto 861-1192, Japan
| | - Toshikazu Morishita
- Hokkaido Agricultural Research Center, National Agriculture and Food Research Organization, Shinsei, Memuro, Kasai-gun 082-0081, Japan
| |
Collapse
|
8
|
Fabrication and characterization of Pickering high internal phase emulsions stabilized by Tartary buckwheat bran flour. Food Chem X 2022; 16:100513. [DOI: 10.1016/j.fochx.2022.100513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/12/2022] [Accepted: 11/15/2022] [Indexed: 11/21/2022] Open
|
9
|
Shao S, Yi X, Li C. Main factors affecting the starch digestibility in Chinese steamed bread. Food Chem 2022; 393:133448. [PMID: 35751217 DOI: 10.1016/j.foodchem.2022.133448] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 05/15/2022] [Accepted: 06/08/2022] [Indexed: 11/25/2022]
Abstract
Chinese steamed bread (CSB) is one of the staple foods in China, although it has a high glycemic index (GI) value. Development of CSB with a slower starch digestibility is thus of great importance for the improvement of human health. Many factors are related to the starch digestibility in CSB. Most currently available strategies are focusing on the incorporation of other whole flours with high dietary fiber or polyphenols to reduce the starch digestibility. Although successful in reducing starch digestibility, the incorporation of these flours also deteriorated textural attributes and sensory characteristics of CSB. Much more strategies have been applied for the reduction of starch digestibility in breads, which should be further explored to confirm if they are applicable for CSB. This review contains important information, that could potentially turn CSB into a much healthier food product with slower starch digestibility.
Collapse
Affiliation(s)
- Shuaibo Shao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xueer Yi
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Cheng Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| |
Collapse
|
10
|
Punia Bangar S, Sharma N, Singh A, Phimolsiripol Y, Brennan CS. Glycaemic response of pseudocereal‐based gluten‐free food products: a review. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Sneh Punia Bangar
- Department of Food, Nutrition and Packaging Sciences Clemson University Clemson 29634 USA
| | - Nitya Sharma
- Food Customization Research Lab Centre for Rural Development and Technology New Delhi 110016 India
| | - Arashdeep Singh
- Department of Food Science and Technology Punjab Agricultural University Ludhiana Punjab 141004 India
| | | | | |
Collapse
|
11
|
Lv X, Zhang S, Zhen S, Shi Y, Liu B. Physicochemical properties of tigernut (
Cyperus esculentus
) tuber starch and its application in steamed bread. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Xiaofan Lv
- School of Food Science Henan Institute of Science and Technology Xinxiang China
| | - Sheng Zhang
- School of Food Science Henan Institute of Science and Technology Xinxiang China
| | - Shiyu Zhen
- School of Food Science Henan Institute of Science and Technology Xinxiang China
| | - Yuzhong Shi
- School of Food Science Henan Institute of Science and Technology Xinxiang China
| | - Benguo Liu
- School of Food Science Henan Institute of Science and Technology Xinxiang China
| |
Collapse
|
12
|
Hu Y, Sun H, Mu T. Effects of sweet potato leaf powder on sensory, texture, nutrition and digestive characteristics of steamed bread. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16697] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yuwei Hu
- Laboratory of Food Chemistry and Nutrition Science Institute of Food Science and Technology Chinese Academy of Agricultural Sciences; Key Laboratory of Agro‐Products Processing, Ministry of Agriculture and Rural Affairs, No. 2 Yuan Ming Yuan West Road, Haidian District, P.O. Box 5109, Beijing 100193 China
| | - Hongnan Sun
- Laboratory of Food Chemistry and Nutrition Science Institute of Food Science and Technology Chinese Academy of Agricultural Sciences; Key Laboratory of Agro‐Products Processing, Ministry of Agriculture and Rural Affairs, No. 2 Yuan Ming Yuan West Road, Haidian District, P.O. Box 5109, Beijing 100193 China
| | - Taihua Mu
- Laboratory of Food Chemistry and Nutrition Science Institute of Food Science and Technology Chinese Academy of Agricultural Sciences; Key Laboratory of Agro‐Products Processing, Ministry of Agriculture and Rural Affairs, No. 2 Yuan Ming Yuan West Road, Haidian District, P.O. Box 5109, Beijing 100193 China
| |
Collapse
|
13
|
HAN F, ZHANG S, ZHOU W, ZHANG Y, CHEN C. Fabrication and characterization of Pickering high internal phase emulsion stabilized by mung bean flour. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.85122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Fenxia HAN
- Henan Institute of Science and Technology, China
| | - Sheng ZHANG
- Henan Institute of Science and Technology, China
| | - Wei ZHOU
- Henan Institute of Science and Technology, China
| | | | | |
Collapse
|
14
|
ZHANG S, ZHOU W, CHEN C. Application of Tartary buckwheat bran flour modified by heat-moisture treatment in steamed bread processing. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.71622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Sheng ZHANG
- Henan Institute of Science and Technology, China
| | - Wei ZHOU
- Henan Institute of Science and Technology, China
| | | |
Collapse
|