1
|
Gautam S, Kathuria D, Hamid, Dobhal A, Singh N. Vacuum impregnation: Effect on food quality, application and use of novel techniques for improving its efficiency. Food Chem 2024; 460:140729. [PMID: 39116776 DOI: 10.1016/j.foodchem.2024.140729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 07/16/2024] [Accepted: 07/30/2024] [Indexed: 08/10/2024]
Abstract
Vacuum Impregnation (VI) act as promising method for rapidly introducing specific concentration solutions into food matrices using a hydrodynamic mechanism and deformation phenomenon to attain a product with specific tailored functional quality characteristics. VI facilitates rapid introduction of specific solutions into the food matrices. This technique allows efficient incorporation of bioactive compounds and nutritional components, meeting the rising consumer demand for functional foods. Furthermore, VI when combined with non-thermal techniques, opens up new avenues for preserving higher quality attributes and enhancing antimicrobial effects. The unique ability of VI to rapidly infuse specific solutions into food matrices, combined with the advantages of non-thermal processes, addresses the growing consumer demand for products enriched with bioactive ingredients. Hence, the present review aims to explore the potential impact of VI, coupled with novel techniques, on food quality, its practical applications, and the enhancement of process efficiency for large-scale industrial production.
Collapse
Affiliation(s)
- Sunakshi Gautam
- Department of Food Technology, School of Agriculture, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Deepika Kathuria
- Department of Food Science and Technology, Graphic Era deemed to be University, Dehradun, Uttarakhand, 248002, India.
| | - Hamid
- Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Ankita Dobhal
- Department of Food Science and Technology, Graphic Era deemed to be University, Dehradun, Uttarakhand, 248002, India
| | - Narpinder Singh
- Department of Food Science and Technology, Graphic Era deemed to be University, Dehradun, Uttarakhand, 248002, India.
| |
Collapse
|
2
|
Durán-Castañeda AC, Bueno-Durán AY, Girón-Pérez MI, Ragazzo-Sánchez JA, Sánchez-Burgos JA, Sáyago-Ayerdi SG, Zamora-Gasga VM. In Vitro Digestion of Vacuum-Impregnated Yam Bean Snacks: Pediococcus acidilactici Viability and Mango Seed Polyphenol Bioaccessibility. Microorganisms 2024; 12:1993. [PMID: 39458302 PMCID: PMC11509223 DOI: 10.3390/microorganisms12101993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 10/28/2024] Open
Abstract
This study investigates the in vitro digestion of vacuum-impregnated yam bean snacks enriched with Pediococcus acidilactici and mango seed polyphenols, focusing on bacterial survival and polyphenol bioaccessibility. The snacks were prepared by vacuum impregnation (VI) with solutions containing either mango seed extract, P. acidilactici, or a combination of both, followed by dehydration. The antimicrobial activity of the treatments was assessed against pathogens, revealing limited effectiveness, likely due to insufficient concentrations of mango seed extract and the intrinsic resistance of the bacteria. VI of mango seed extract improved the total soluble phenols (TSP) content up to 400% and maintained the initial probiotic concentration (106 cell/mL). In vitro digestion was performed to simulate gastrointestinal conditions, measuring the stability of TSP and the survival of P. acidilactici. The results indicated that the viability of P. acidilactici fluctuated throughout the digestion process (106 to 104 log UFC/g), the polyphenols showed varying degrees of bioaccessibility (11 to 30%), and the TSP content in the intestinal fraction ranged from 1.95 to 6.54 mg GAE/g. The study highlights the potential of VI for incorporating functional components into plant-based snacks, though further optimization is necessary to enhance the stability of P. acidilactici and the effectiveness of the bioactive ingredients.
Collapse
Affiliation(s)
- Alba Cecilia Durán-Castañeda
- Instituto Tecnológico de Tepic, Tecnológico Nacional de México, Av. Tecnológico No 2595, Col. Lagos del Country, Tepic CP 63175, Nayarit, Mexico; (A.C.D.-C.); (J.A.R.-S.); (J.A.S.-B.); (S.G.S.-A.)
| | - Adela Yolanda Bueno-Durán
- Laboratorio Nacional para la Investigación en Inocuidad Alimentaria (LANIIA)—Unidad Nayarit, Universidad Autónoma de Nayarit, Calle Tres S/N, Colonia Cd. Industrial, Tepic CP 63173, Nayarit, Mexico; (A.Y.B.-D.); (M.I.G.-P.)
| | - Manuel Iván Girón-Pérez
- Laboratorio Nacional para la Investigación en Inocuidad Alimentaria (LANIIA)—Unidad Nayarit, Universidad Autónoma de Nayarit, Calle Tres S/N, Colonia Cd. Industrial, Tepic CP 63173, Nayarit, Mexico; (A.Y.B.-D.); (M.I.G.-P.)
| | - Juan Arturo Ragazzo-Sánchez
- Instituto Tecnológico de Tepic, Tecnológico Nacional de México, Av. Tecnológico No 2595, Col. Lagos del Country, Tepic CP 63175, Nayarit, Mexico; (A.C.D.-C.); (J.A.R.-S.); (J.A.S.-B.); (S.G.S.-A.)
| | - Jorge Alberto Sánchez-Burgos
- Instituto Tecnológico de Tepic, Tecnológico Nacional de México, Av. Tecnológico No 2595, Col. Lagos del Country, Tepic CP 63175, Nayarit, Mexico; (A.C.D.-C.); (J.A.R.-S.); (J.A.S.-B.); (S.G.S.-A.)
| | - Sonia Guadalupe Sáyago-Ayerdi
- Instituto Tecnológico de Tepic, Tecnológico Nacional de México, Av. Tecnológico No 2595, Col. Lagos del Country, Tepic CP 63175, Nayarit, Mexico; (A.C.D.-C.); (J.A.R.-S.); (J.A.S.-B.); (S.G.S.-A.)
| | - Victor Manuel Zamora-Gasga
- Instituto Tecnológico de Tepic, Tecnológico Nacional de México, Av. Tecnológico No 2595, Col. Lagos del Country, Tepic CP 63175, Nayarit, Mexico; (A.C.D.-C.); (J.A.R.-S.); (J.A.S.-B.); (S.G.S.-A.)
| |
Collapse
|
3
|
Wu Y, Liu Y, Jia Y, Feng CH, Zhang H, Ren F, Zhao G. Effects of thermal processing on natural antioxidants in fruits and vegetables. Food Res Int 2024; 192:114797. [PMID: 39147492 DOI: 10.1016/j.foodres.2024.114797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 08/17/2024]
Abstract
Research on the content of polyphenolic compounds in fruits and vegetables, the extraction of bioactive compounds, and the study of their impact on the human body has received growing attention in recent years. This is due to the great interest in bioactive compounds and their health benefits, resulting in increased market demand for natural foods. Bioactive compounds from plants are generally categorized as natural antioxidants with health benefits such as anti-inflammatory, antioxidant, anti-diabetic, anti-carcinogenic, etc. Thermal processing has been used in the food sector for a long history. Implementing different thermal processing methods could be essential in retaining the quality of the natural antioxidant compounds in plant-based foods. A comprehensive review is presented on the effects of thermal blanching (i.e., hot water, steam, superheated steam impingement, ohmic and microwave blanching), pasteurization, and sterilization and drying technologies on natural antioxidants in fruits and vegetables.
Collapse
Affiliation(s)
- Yingying Wu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering, and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Yanan Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering, and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Yuanqiang Jia
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering, and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Chao-Hui Feng
- School of Regional Innovation and Social Design Engineering, Faculty of Engineering, Kitami Institute of Technology, 165 Koen-cho, Kitami 090-8507, Hokkaido, Japan
| | - Huijuan Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering, and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Feiyue Ren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering, and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China.
| | - Guoping Zhao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering, and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China.
| |
Collapse
|
4
|
Nuñez H, Jaques A, Belmonte K, Elitin J, Valdenegro M, Ramírez C, Córdova A. Development of an Apple Snack Enriched with Probiotic Lacticaseibacillus rhamnosus: Evaluation of the Refractance Window Drying Process on Cell Viability. Foods 2024; 13:1756. [PMID: 38890984 PMCID: PMC11171815 DOI: 10.3390/foods13111756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 06/20/2024] Open
Abstract
The objective of this study was to develop a dried apple snack enriched with probiotics, evaluate its viability using Refractance Window (RWTM) drying, and compare it with conventional hot air drying (CD) and freeze-drying (FD). Apple slices were impregnated with Lacticaseibacillus rhamnosus and dried at 45 °C using RWTM and CD and FD. Total polyphenol content (TPC), color (∆E*), texture, and viable cell count were measured, and samples were stored for 28 days at 4 °C. Vacuum impregnation allowed for a probiotic inoculation of 8.53 log CFU/gdb. Retention values of 6.30, 6.67, and 7.20 log CFU/gdb were observed for CD, RWTM, and FD, respectively; the population in CD, RWTM remained while FD showed a decrease of one order of magnitude during storage. Comparing RWTM with FD, ∆E* was not significantly different (p < 0.05) and RWTM presented lower hardness values and higher crispness than FD, but the RWTM-dried apple slices had the highest TPC retention (41.3%). Microstructural analysis showed that RWTM produced a smoother surface, facilitating uniform moisture diffusion and lower mass transfer resistance. The effective moisture diffusion coefficient was higher in RWTM than in CD, resulting in shorter drying times. As a consequence, RWTM produced dried apple snacks enriched with probiotics, with color and TPC retention comparable to FD.
Collapse
Affiliation(s)
- Helena Nuñez
- Departamento de Ingeniería Química y Ambiental, Universidad Técnica Federico Santa María, P.O. Box 110-V, Valparaíso 2390123, Chile; (H.N.); (A.J.); (K.B.); (J.E.); (C.R.)
- Programa de Doctorado de Ciencias Agroalimentarias, Facultad de Ciencias Agronómicas y de los Alimentos, Pontifica Universidad Católica de Valparaíso, Valparaíso 2340025, Chile;
| | - Aldonza Jaques
- Departamento de Ingeniería Química y Ambiental, Universidad Técnica Federico Santa María, P.O. Box 110-V, Valparaíso 2390123, Chile; (H.N.); (A.J.); (K.B.); (J.E.); (C.R.)
| | - Karyn Belmonte
- Departamento de Ingeniería Química y Ambiental, Universidad Técnica Federico Santa María, P.O. Box 110-V, Valparaíso 2390123, Chile; (H.N.); (A.J.); (K.B.); (J.E.); (C.R.)
| | - Jamil Elitin
- Departamento de Ingeniería Química y Ambiental, Universidad Técnica Federico Santa María, P.O. Box 110-V, Valparaíso 2390123, Chile; (H.N.); (A.J.); (K.B.); (J.E.); (C.R.)
| | - Mónika Valdenegro
- Programa de Doctorado de Ciencias Agroalimentarias, Facultad de Ciencias Agronómicas y de los Alimentos, Pontifica Universidad Católica de Valparaíso, Valparaíso 2340025, Chile;
- Escuela de Agronomía, Pontificia Universidad Católica de Valparaíso, Calle San Francisco S/N, La Palma, Quillota 2260000, Chile
| | - Cristian Ramírez
- Departamento de Ingeniería Química y Ambiental, Universidad Técnica Federico Santa María, P.O. Box 110-V, Valparaíso 2390123, Chile; (H.N.); (A.J.); (K.B.); (J.E.); (C.R.)
| | - Andrés Córdova
- Programa de Doctorado de Ciencias Agroalimentarias, Facultad de Ciencias Agronómicas y de los Alimentos, Pontifica Universidad Católica de Valparaíso, Valparaíso 2340025, Chile;
- Escuela de Alimentos, Pontificia Universidad Católica de Valparaíso, Waddington 716 Playa Ancha, Valparaíso 2340025, Chile
| |
Collapse
|
5
|
Cai Y, Dong Y, Han M, Jin M, Liu H, Gai Z, Zou K. Lacticaseibacillus paracasei LC86 mitigates age-related muscle wasting and cognitive impairment in SAMP8 mice through gut microbiota modulation and the regulation of serum inflammatory factors. Front Nutr 2024; 11:1390433. [PMID: 38873561 PMCID: PMC11169942 DOI: 10.3389/fnut.2024.1390433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/06/2024] [Indexed: 06/15/2024] Open
Abstract
Purpose Chronic inflammation contributes to the decline in muscle strength and cognitive abilities associated with aging. This study aims to clarify the effects of oral administration of Lacticaseibacillus paracasei LC86 on these age-related declines, as well as its impact on the composition of gut microbiota. Methods Senescence-accelerated mouse prone 8 (SAMP8) mice received a 12 week regimen of LC86 (1 × 109 CFU/day). Muscle strength was assessed through forelimb grip strength and four-limb hanging tests. Cognitive function was evaluated through behavioral performance tests, and changes in gut microbiota were analyzed. Results Administration of LC86 significantly enhanced muscle strength, demonstrated by increased grip strength and higher glycogen content in the gastrocnemius muscle (p = 0.041, p = 0.017, and p = 0.000, respectively). Behavioral tests suggested that LC86 mitigated age-related cognitive decline. Furthermore, there was a significant decrease in serum pro-inflammatory cytokines, such as IL-6, TNF-α, and MCP-1 (p = 0.002, p = 0.000, and p = 0.005, respectively), and an elevation in the anti-inflammatory cytokine IL-10 level (p = 0.000). An increase in hepatic antioxidant capacity was observed. Significant changes in the gut microbiota composition were noted, including increased populations of Bifidobacterium and Lactobacillus and decreased levels of Escherichia/Shigella and Bacteroides. Conclusion The findings suggest that LC86 supplementation mitigates muscle weakness and cognitive impairment in aging SAMP8 mice, potentially through the modulation of inflammation and gut microbiota composition. LC86 emerges as a promising candidate for ameliorating the decline of muscular and cognitive functions associated with aging.
Collapse
Affiliation(s)
- Yihui Cai
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- Stem Cell Research and Translation Center, Nanjing Agricultural University, Nanjing, China
| | - Yao Dong
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- Stem Cell Research and Translation Center, Nanjing Agricultural University, Nanjing, China
| | - Mei Han
- Department of Food Quality and Safety, Shanghai Business School, Shanghai, China
| | - Manfei Jin
- Department of Animal Experiment, Chengxi Biotech, Shanghai, China
| | - Huan Liu
- Department of Research and Development, Wecare Probiotics Co., Ltd., Suzhou, China
| | - Zhonghui Gai
- Department of Research and Development, Wecare Probiotics Co., Ltd., Suzhou, China
| | - Kang Zou
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- Stem Cell Research and Translation Center, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
6
|
Lan H, Wang H, Chen C, Hu W, Ai C, Chen L, Teng H. Flavonoids and gastrointestinal health: single molecule for multiple roles. Crit Rev Food Sci Nutr 2023; 64:10987-11005. [PMID: 37409462 DOI: 10.1080/10408398.2023.2230501] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
Diet can be considered as one of the pivotal factors in regulating gastrointestinal health, and polyphenols widely distributed in human daily diet. The polyphenols and their metabolites playing a series of beneficial effects in human gastrointestinal tract that can regulate of the gut microbiota, increase intestinal barrier function, repair gastrointestinal mucosa, reduce oxidative stress, inhibit the secretion of inflammatory factors and regulating immune function, and their absorption and biotransformation mainly depend on the activity of intestinal microflora. However, little is known about the two-way interaction between polyphenols and intestinal microbiota. The objective of this review is to highlight the structure optimization and effect of flavonoids on intestinal flora, and discusses the mechanisms of dietary flavonoids regulating intestinal flora. The multiple effects of single molecule of flavonoids, and inter-dependence between the gut microbiota and polyphenol metabolites. Moreover, the protective effects of polyphenols on intestinal barrier function, and effects of interaction between plant polyphenols and macromolecules on gastrointestinal health. This review provided valuable insight that may be useful for better understanding the mechanism of the gastrointestinal health effects of polyphenols, and provide a scientific basis for their application as functional food.
Collapse
Affiliation(s)
- Haijing Lan
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang, China
| | - Hui Wang
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang, China
| | - Chong Chen
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang, China
| | - Wenlu Hu
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang, China
| | - Chao Ai
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang, China
| | - Lei Chen
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang, China
| | - Hui Teng
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang, China
| |
Collapse
|
7
|
Hu Y, Lin Q, Zhao H, Li X, Sang S, McClements DJ, Long J, Jin Z, Wang J, Qiu C. Bioaccessibility and bioavailability of phytochemicals: Influencing factors, improvements, and evaluations. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|