1
|
Costa M, Soares C, Silva A, Barroso MF, Simões P, Ferreira M, Gameiro P, Grosso C, Delerue-Matos C. Optimization of Nanoencapsulation of Codium tomentosum Extract and Its Potential Application in Yogurt Fortification. Mar Drugs 2025; 23:147. [PMID: 40278268 PMCID: PMC12028962 DOI: 10.3390/md23040147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 03/24/2025] [Accepted: 03/26/2025] [Indexed: 04/26/2025] Open
Abstract
Marine macroalgae are excellent sources of bioactive compounds recognized by their pharmaceutical and biomedical potential. A subcritical water extraction (SWE) was applied to the macroalga Codium tomentosum, and the extract was used to prepare phytosomes. A Box-Behnken design was applied to optimize the entrapment efficiency. These phytosomes were further modified with DSPE-PEG (2000)-maleimide and apolipoprotein E and characterized by dynamic light scattering, UV spectrophotometry, octanol/water partition coefficient, differential scanning calorimetry, and Fourier transform infrared spectroscopy. As proof of concept, prototypes of functional food tailored to the elderly were produced. Yogurts were fortified with seaweed extract or phytosomes, and physicochemical properties and proximal composition (pH, acidity, syneresis, moisture, peroxides, proteins, total lipids, sugar content, ash, and mineral composition) were analyzed. The antioxidant and the inhibition capacity of two brain enzymes, cholinesterases (AChE and BuChE), involved in the pathogenesis of Alzheimer's disease, were also evaluated in the final prototypes. Despite their unappealing sensory characteristics, the results are promising for integrating marine extracts with potential neuroprotective effects into functional foods.
Collapse
Affiliation(s)
- Micaela Costa
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal; (M.C.); (A.S.); (M.F.B.); (C.D.-M.)
| | - Cristina Soares
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal; (M.C.); (A.S.); (M.F.B.); (C.D.-M.)
| | - Aurora Silva
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal; (M.C.); (A.S.); (M.F.B.); (C.D.-M.)
- Department of Analytical Chemistry and Food Science, Nutrition and Food Group (NuFoG), Instituto de Agroecoloxía e Alimentación (IAA)—CITEXVI, Universidade de Vigo, 36310 Vigo, Spain
| | - Maria Fátima Barroso
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal; (M.C.); (A.S.); (M.F.B.); (C.D.-M.)
| | - Pedro Simões
- LAQV, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Quinta da Torre, 2829-516 Caparica, Portugal;
| | - Mariana Ferreira
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal; (M.F.); (P.G.)
| | - Paula Gameiro
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal; (M.F.); (P.G.)
| | - Clara Grosso
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal; (M.C.); (A.S.); (M.F.B.); (C.D.-M.)
| | - Cristina Delerue-Matos
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal; (M.C.); (A.S.); (M.F.B.); (C.D.-M.)
| |
Collapse
|
2
|
Daci M, Berisha L, Mercatante D, Rodriguez-Estrada MT, Jin Z, Huang Y, Amorati R. Advancements in Biosensors for Lipid Peroxidation and Antioxidant Protection in Food: A Critical Review. Antioxidants (Basel) 2024; 13:1484. [PMID: 39765813 PMCID: PMC11672933 DOI: 10.3390/antiox13121484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/26/2024] [Accepted: 11/29/2024] [Indexed: 01/11/2025] Open
Abstract
This review highlights the progress made in recent years on biosensors aimed at detecting relevant analytes/markers of food peroxidation. Starting from the basic definition of biosensors and the chemical features of peroxidation, here we describe the different approaches that can be used to obtain information about the progress of peroxidation and the efficacy of antioxidants. Aptamers, metal-organic frameworks, nanomaterials, and supported enzymes, in conjunction with electrochemical methods, can provide fast and cost-effective detection of analytes related to peroxidation, like peroxides, aldehydes, and metals. The determination of (poly)phenols concentrations by biosensors, which can be easily obtained by using immobilized enzymes (like laccase), provides an indirect measure of peroxidation. The rationale for developing new biosensors, with a special focus on food applications, is also discussed.
Collapse
Affiliation(s)
- Majlinda Daci
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, University of Pristina, Str. Mother Teresa, 10000 Prishtina, Kosovo;
| | - Liridon Berisha
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, University of Pristina, Str. Mother Teresa, 10000 Prishtina, Kosovo;
- NanoAlb, Albanian NanoScience and Nanotechnology Unit, Academy of Sciences of Albania, Shëtitorja Murat Toptani, 1000 Tiranë, Albania
| | - Dario Mercatante
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, Alma Mater Studiorum-Università di Bologna, Viale G. Fanin 40, 40127 Bologna, Italy; (D.M.); (M.T.R.-E.)
| | - Maria Teresa Rodriguez-Estrada
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, Alma Mater Studiorum-Università di Bologna, Viale G. Fanin 40, 40127 Bologna, Italy; (D.M.); (M.T.R.-E.)
| | - Zongxin Jin
- Dipartimento di Chimica “Giacomo Ciamician”, Alma Mater Studiorum-Università di Bologna, Via Gobetti 83, 40129 Bologna, Italy; (Z.J.); (Y.H.)
| | - Yeqin Huang
- Dipartimento di Chimica “Giacomo Ciamician”, Alma Mater Studiorum-Università di Bologna, Via Gobetti 83, 40129 Bologna, Italy; (Z.J.); (Y.H.)
| | - Riccardo Amorati
- Dipartimento di Chimica “Giacomo Ciamician”, Alma Mater Studiorum-Università di Bologna, Via Gobetti 83, 40129 Bologna, Italy; (Z.J.); (Y.H.)
| |
Collapse
|
3
|
Shen Y, Miao C, Ma M, Zhen Z, He J, Pei X, Zhang Y, Man C, Zhao Q, Jiang Y. Mechanistic insights into the changes of biological activity and physicochemical characteristics in Lacticaseibacillus paracasei fortified milk powder during storage. Food Chem 2024; 452:139501. [PMID: 38728887 DOI: 10.1016/j.foodchem.2024.139501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/03/2024] [Accepted: 04/25/2024] [Indexed: 05/12/2024]
Abstract
To clarify the change mechanism of biological activity and physicochemical characteristics in Lacticaseibacillus paracasei JY025 fortified milk powder (LFMP) during storage, morphological observation, JY025 survival, storage stability, and metabolomics of LFMP were determined during the storage period in this study. The results showed that the LFMP had a higher survival rate of JY025 compared with the bacterial powder of JY025 (LBP) during storage, which suggested that milk powder matrix could reduce strain JY025 mortality under prolonged storage in the LFMP samples. The fortification of strain JY025 also affected the stability of milk powder during the storage period. There was lower water activity and higher glass transition temperature in LFMP samples compared with blank control milk powder (BCMP) during storage. Moreover, the metabolomics results of LFMP indicated that vitamin degradation, Maillard reaction, lipid oxidation, tricarboxylic acid cycle, and lactobacilli metabolism are interrelated and influence each other to create complicated metabolism networks.
Collapse
Affiliation(s)
- Yu Shen
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Chao Miao
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Ming Ma
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Zizhu Zhen
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Jian He
- National Center of Technology Innovation for Dairy, Huhehaote 010000, China
| | - Xiaoyan Pei
- National Center of Technology Innovation for Dairy, Huhehaote 010000, China
| | - Yu Zhang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Chaoxin Man
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Qianyu Zhao
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Yujun Jiang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China; Food Laboratory of Zhongyuan, Luohe, Henan 462300, China.
| |
Collapse
|
4
|
Li Y, Li R, Hu X, Liu J, Liu G, Gao L, Zhang Y, Wang H, Zhu B. Changes of the volatile compounds and odors in one-stage and three-stage infant formulas during their secondary shelf-life. Curr Res Food Sci 2024; 8:100693. [PMID: 38356611 PMCID: PMC10864756 DOI: 10.1016/j.crfs.2024.100693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/05/2024] [Accepted: 01/31/2024] [Indexed: 02/16/2024] Open
Abstract
The odor of infant formula changes due to alterations in its volatile composition during the shelf life. However, there is currently a lack of research on whether the odor changes in infant formula during the secondary shelf life, which refers to the period of repeated opening and usage in daily life. This study used headspace solid-phase microextraction (HS-SPME) coupled with gas chromatography-electrostatic orbitrap high-resolution mass spectrometry (GC-Orbitrap-MS) to investigate the volatile composition changes in one-stage and three-stage infant formulas during different stages (0 day, 3 days, and 7 days during the secondary shelf-life, i.e. simulated daily use). A total of 32 volatiles were identified, including nine aldehydes, seven ketones, four alcohols, three furans, two sulfur compounds, two esters, and five terpenoids. Of these, 16 compounds changed significantly in one-stage samples and 23 compounds in three-stage samples within 7 days of the secondary shelf-life. Further the odor of the three-stage infant formula samples was found changed substantially after 3 days of simulated use by using the triangle test. This study highlighted the considerable alterations in volatile compound composition and sensory changes during the simulated daily use and provided valuable insights for consumers in selecting and using infant formula products, as well as a new perspective for enterprises to improve the sensory quality of their products.
Collapse
Affiliation(s)
- Yilin Li
- Beijing Key Laboratory of Forestry Food Processing and Safety, Department of Food Science, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- Heilongjiang Feihe Dairy Co., Ltd, Beijing, 100015, China
| | - Ruotong Li
- Beijing Key Laboratory of Forestry Food Processing and Safety, Department of Food Science, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Xinyu Hu
- Beijing Key Laboratory of Forestry Food Processing and Safety, Department of Food Science, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Jiani Liu
- Beijing Key Laboratory of Forestry Food Processing and Safety, Department of Food Science, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Guirong Liu
- Heilongjiang Feihe Dairy Co., Ltd, Beijing, 100015, China
| | - Lipeng Gao
- Heilongjiang Feihe Dairy Co., Ltd, Beijing, 100015, China
| | - Yongjiu Zhang
- Heilongjiang Feihe Dairy Co., Ltd, Beijing, 100015, China
| | - Houyin Wang
- China National Institute of Standardization, Beijing, 100191, China
| | - Baoqing Zhu
- Beijing Key Laboratory of Forestry Food Processing and Safety, Department of Food Science, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
5
|
Gomes SM, Leitão A, Alves A, Santos L. Incorporation of Moringa oleifera Leaf Extract in Yoghurts to Mitigate Children's Malnutrition in Developing Countries. Molecules 2023; 28:2526. [PMID: 36985498 PMCID: PMC10058877 DOI: 10.3390/molecules28062526] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/03/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023] Open
Abstract
Moringa oleifera, which is rich in bioactive compounds, has numerous biological activities and is a powerful source of antioxidants and nutrients. Therefore, M. oleifera can be incorporated into food to mitigate children's malnutrition. In this work, the bioactive compounds were extracted from M. oleifera leaf powder by ultrasound-assisted solid-liquid extraction. The antioxidant and antimicrobial activities and the phenolic composition of the extract were evaluated. The extract presented a total phenolic content of 54.5 ± 16.8 mg gallic acid equivalents/g and IC50 values of 133.4 ± 12.3 mg/L for DPPH and 60.0 ± 9.9 mg/L for ABTS. Catechin, chlorogenic acid, and epicatechin were the main phenolics identified by HPLC-DAD. The obtained extract and M. oleifera leaf powder were incorporated into yoghurts and their physicochemical and biological properties were studied. The incorporation of M. oleifera did not impair the yoghurts' stability over eight weeks when compared to both negative and positive controls. The extract presented higher stability regarding syneresis but lower stability regarding TPC compared to the powder. Also, the fortified yoghurts presented higher antioxidant properties than the negative control. These findings highlight the potential use of M. oleifera powder and extract as natural additives to produce fortified foods that can be used in the mitigation of malnutrition.
Collapse
Affiliation(s)
- Sandra M. Gomes
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Anabela Leitão
- LESRA—Laboratory for Separation Engineering, Chemical Reaction and Environment, Faculty of Engineering, University of Agostinho Neto, Edificio CNIC, Avenida Ho Chi Min 201, Luanda P.O. Box 815, Angola
| | - Arminda Alves
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Lúcia Santos
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| |
Collapse
|
6
|
Markers and Mechanisms of Deterioration Reactions in Dairy Products. FOOD ENGINEERING REVIEWS 2023. [DOI: 10.1007/s12393-023-09331-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
7
|
Marques Paes da Cunha T, Cristina da Silva Haas I, Araujo João Lopes da Costa M, Luna AS, Santos de Gois J, Dias de Mello Castanho Amboni R, Schwinden Prudencio E. Dairy powder enriched with a soy extract (Glycine max): physicochemical and polyphenolic characteristics, physical and rehydration properties and multielement composition. Food Res Int 2022; 162:112144. [DOI: 10.1016/j.foodres.2022.112144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 11/04/2022] [Accepted: 11/15/2022] [Indexed: 11/21/2022]
|
8
|
Tang L, Zhang Y, Jin Y, Yu M, Song H. Switchable GC/GC × GC–olfactometry–mass spectrometry system for the analysis of aroma components of infant formula milk-based on cow and goat milk. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|