1
|
Wang Y, Ou X, Al-Maqtari QA, He HJ, Othman N. Evaluation of amylose content: Structural and functional properties, analytical techniques, and future prospects. Food Chem X 2024; 24:101830. [PMID: 39347500 PMCID: PMC11437959 DOI: 10.1016/j.fochx.2024.101830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/29/2024] [Accepted: 09/09/2024] [Indexed: 10/01/2024] Open
Abstract
Amylose content (AC) is critical in evaluating starch properties, significantly influencing the food industry and human nutrition. Although amylose is not completely linear, its unique structure makes it a key research focus across various scientific fields. Understanding amylose's structural and functional properties is essential for its applications in medical, nutritional, and industrial sectors. Accurate determination of AC, from simple qualitative assessments to precise quantitative measurements, is vital for effectively processing and using starch-rich products. The choice of AC determination method depends on the specific application and the required accuracy and detail. This review summarizes amylose's structural and functional characteristics and recent advancements in qualitative and quantitative AC determination techniques. It also provides insights into future trends and prospects for these technologies, emphasizing the need for more rapid, convenient, accurate, and customizable methods. In conclusion, advancements in amylose determination should enhance accuracy, speed, and ease of use to improve quality control and applications across various sectors while expanding our understanding of amylose and its functionalities.
Collapse
Affiliation(s)
- Yuling Wang
- School of Agriculture, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Xingqi Ou
- School of Agriculture, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Qais Ali Al-Maqtari
- Micropollutant Research Centre (MPRC), Institute for Integrated Engineering, Universiti Tun Hussein Onn Malaysia (UTHM), 86400 Parit Raja, Batu Pahat, Johor, Malaysia
- Department of Food Science and Nutrition, Faculty of Agriculture, Food, and Environment, Sana'a University, Sana'a, Yemen
| | - Hong-Ju He
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637459, Singapore
| | - Norzila Othman
- Micropollutant Research Centre (MPRC), Institute for Integrated Engineering, Universiti Tun Hussein Onn Malaysia (UTHM), 86400 Parit Raja, Batu Pahat, Johor, Malaysia
| |
Collapse
|
2
|
Hao Z, Li Z, Zhou Q, Ma Z, Lv J, Wang Y, Hu A, Cheng J, Yu Z, Xie Z, Du Y. Investigation of the effect of ultrasonication on starch-fatty acid complexes and the stabilization mechanism. Food Res Int 2024; 191:114711. [PMID: 39059957 DOI: 10.1016/j.foodres.2024.114711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/31/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024]
Abstract
The complexation of physically modified starch with fatty acids is favorable for the production of resistant starch. However, there is a lack of information on the effect of ultrasonication (UC) on the structure and properties of starch complexes and the molecular mechanism of the stabilization. Here, the multi-scale structure and in vitro digestive properties of starch-fatty acid complexes before and after UC were investigated, and the stabilization mechanisms of starch and fatty acids were explored. The results showed that the physicochemical properties and multi-scale structure of the starch-fatty acid complexes significantly changed with the type of fatty acids. The solubility and swelling power of the starch-fatty acid complexes were significantly decreased after UC (P < 0.05), which facilitated the binding of starch with fatty acids. The XRD results revealed that after the addition of fatty acids, the starch-fatty acid complexes showed typical V-shaped complexes. In addition, the starch-fatty acid complexes showed a significant increase in complexing index, improved short-range ordering and enhanced thermal stability. However, the differences in the structure and properties of the fatty acids themselves resulted in no significant improvement in the multi-scale structure of maize starch-palmitic acid by UC. In terms of digestibility, especially the complexes after UC were more compact in structure, which increased the difficulty of enzymatic digestion and thus slowed down the digestion process. DFT calculations and combined with FT-IR analysis showed that non-covalent interactions such as hydrogen bonding and hydrophobic interactions were the main driving force for the formation of the complexes, with binding energies (lauric acid, myristic acid and palmitic acid) of -30.50, -22.14 and -14.10 kcal/mol, respectively. Molecular dynamics simulations further confirmed the molecular mechanism of inclusion complex formation and stabilization. This study is important for the regulation of starchy foods by controlling processing conditions, and provides important information on the role of fatty acids in the regulation of starch complexes and the binding mechanism.
Collapse
Affiliation(s)
- Zongwei Hao
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China; Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei 230036, China
| | - Zhaofeng Li
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Qianxin Zhou
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Zhenni Ma
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Jiali Lv
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yanrui Wang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Ailong Hu
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Juntao Cheng
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Zhenyu Yu
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China.
| | - Zhongwen Xie
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China.
| | - Yiqun Du
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China; Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
3
|
Zhao S, Cai S, Ding L, Yi J, Zhou L, Liu Z, Chu C. Exploring the Blood Glucose-Lowering Potential of the Umami Peptides LADW and EEAEGT Derived from Tuna Skeletal Myosin: Perspectives from α-Glucosidase Inhibition and Starch Interaction. Foods 2024; 13:294. [PMID: 38254595 PMCID: PMC10815170 DOI: 10.3390/foods13020294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/09/2024] [Accepted: 01/14/2024] [Indexed: 01/24/2024] Open
Abstract
This study aimed to explore the potential of umami peptides for lowering blood glucose. Molecular docking results showed that the peptides LADW and EEAEGT bound to the active amino acid residues of α-glucosidase via hydrogen bonds and Van der Waals forces, a finding supported by an independent gradient model (IGM). Molecular dynamics (MD) simulations demonstrated that the peptides LADW and EEAEGT can decelerate the outward expansion of α-glucosidase and reduce amino acid fluctuations at the active site. In vitro findings indicated that the peptides LADW and EEAEGT showed potent inhibitory activity against α-glucosidase, with IC50 values of 4.40 ± 0.04 and 6.46 ± 0.22 mM, respectively. Furthermore, MD simulation and morphological observation results also revealed that LADW and EEAEGT alter starch structure and form weak interactions with starch through intermolecular hydrogen bonding, leading to the inhibition of starch hydrolysis. Peptides inhibit the ability of starch to produce reducing sugars after simulated gastrointestinal digestion, providing additional evidence of the inhibition of starch hydrolysis by the added peptides. Taken together, these findings suggest that consuming the umami peptides LADW and EEAEGT may alleviate postprandial blood glucose elevations via inhibiting α-glucosidase and starch hydrolysis.
Collapse
Affiliation(s)
- Shuai Zhao
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (S.Z.); (S.C.); (L.D.); (J.Y.); (L.Z.); (Z.L.)
- Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming 650500, China
- International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China
- Yunnan International Joint Laboratory of Green Food Processing, Kunming 650500, China
| | - Shengbao Cai
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (S.Z.); (S.C.); (L.D.); (J.Y.); (L.Z.); (Z.L.)
- Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming 650500, China
- International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China
- Yunnan International Joint Laboratory of Green Food Processing, Kunming 650500, China
| | - Lixin Ding
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (S.Z.); (S.C.); (L.D.); (J.Y.); (L.Z.); (Z.L.)
- Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming 650500, China
- International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China
- Yunnan International Joint Laboratory of Green Food Processing, Kunming 650500, China
| | - Junjie Yi
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (S.Z.); (S.C.); (L.D.); (J.Y.); (L.Z.); (Z.L.)
- Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming 650500, China
- International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China
- Yunnan International Joint Laboratory of Green Food Processing, Kunming 650500, China
| | - Linyan Zhou
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (S.Z.); (S.C.); (L.D.); (J.Y.); (L.Z.); (Z.L.)
- Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming 650500, China
- International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China
- Yunnan International Joint Laboratory of Green Food Processing, Kunming 650500, China
| | - Zhijia Liu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (S.Z.); (S.C.); (L.D.); (J.Y.); (L.Z.); (Z.L.)
- Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming 650500, China
- International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China
- Yunnan International Joint Laboratory of Green Food Processing, Kunming 650500, China
| | - Chuanqi Chu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (S.Z.); (S.C.); (L.D.); (J.Y.); (L.Z.); (Z.L.)
- Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming 650500, China
- International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China
- Yunnan International Joint Laboratory of Green Food Processing, Kunming 650500, China
| |
Collapse
|
4
|
Wang C, Chao C, Yu J, Copeland L, Huang Y, Wang S. Mechanisms Underlying the Formation of Amylose- Lauric Acid-β-Lactoglobulin Complexes: Experimental and Molecular Dynamics Studies. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:10635-10643. [PMID: 35994717 DOI: 10.1021/acs.jafc.2c04523] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The aim of the present study was to reveal the mechanisms underlying the formation of ternary complexes with a model system of amylose (AM), lauric acid (LA), and β-lactoglobulin (βLG) using experimental studies and molecular dynamics (MD) simulations. Experimental analyses showed that hydrophobic interactions and hydrogen bonds contributed more than electrostatic forces to the formation of the AM-LA-βLG complex. MD simulations indicated that interactions between AM and βLG through electrostatic forces and hydrogen bonds, and to a less extent van der Waals forces, and interactions between AM and LA through van der Waals forces, were mostly responsible for complex formation. The combination of experimental results and MD simulations has provided new mechanistic insights and led us to conclude that hydrophobic interactions, van der Waals forces between AM and LA, and van der Waals forces and hydrogen bonds between AM and βLG were the main driving forces for the formation of the AM-LA-βLG complex.
Collapse
Affiliation(s)
- Cuiping Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
- School of Food Engineering and Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Chen Chao
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
- School of Food Engineering and Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Jinglin Yu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Les Copeland
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales Australia 2006
| | - Yongchun Huang
- College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China
| | - Shujun Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
- School of Food Engineering and Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| |
Collapse
|