1
|
Aung KM, Chu SH, Nawade B, Lee CY, Myung EJ, Park YJ. Analyzing the response of rice to tefuryltrione herbicide: Haplotype variation and evolutionary dynamics of the HIS1 gene. ENVIRONMENTAL RESEARCH 2024; 252:118839. [PMID: 38570131 DOI: 10.1016/j.envres.2024.118839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/15/2024] [Accepted: 03/29/2024] [Indexed: 04/05/2024]
Abstract
Weeds pose multifaceted challenges in rice cultivation, leading to substantial economic losses through reduced yield and poor grain quality. Harnessing the natural genetic diversity in germplasm collections becomes crucial for identifying novel herbicide resistance loci in crops. A comprehensive analysis was conducted on 475 rice accessions from the KRICE depository, assessing their response to TFT (tefuryltrione) and probing the underlying HIS1 (HPPD INHIBITOR SENSITIVE 1) genotypic variations. The HIS1 gene, responsible for detoxifying benzobicyclon (BBC) and imparting broad-spectrum herbicide resistance, holds significant promise in rice breeding. This study explores the genetic landscape of HIS1 within Korean rice collection (KRICE), aiming to unveil genetic variations, haplotype diversity, and evolutionary relationships across diverse rice ecotypes. The indica ecotype showed the highest nucleotide diversity, while the wild and temperate japonica groups exhibited low diversity, hinting at selective sweeps and possible population expansion. Negative Tajima's D values in temperate japonica and wild groups indicate an excess of low-frequency mutations, potentially resulting from selective sweeps. In contrast, with positive Tajima's D values, admixture, indica, and aus groups suggest balancing selection. Furthermore, haplotype analysis uncovered 42 distinct haplotypes within KRICE, with four shared haplotypes between cultivated and wild accessions, four specific to cultivated accessions, and 34 specific to wild types. Phenotypic assessments of these haplotypes revealed that three haplotypes, viz., Hap_1 (predominant in japonica), Hap_2 (predominant in indica), and Hap_3 (specific to indica), displayed significant differences from aus-specific Hap_4 and indica-specific Hap_5. This study offers insights into genetic diversity, selective pressures, and ecotype-specific responses, ultimately paving the way for developing HPPD-inhibiting herbicide-resistant rice cultivars.
Collapse
Affiliation(s)
- Kyaw Myo Aung
- Department of Plant Resources, College of Industrial Sciences, Kongju National University, Yesan 32439, Republic of Korea
| | - Sang-Ho Chu
- Department of Plant Resources, College of Industrial Sciences, Kongju National University, Yesan 32439, Republic of Korea
| | - Bhagwat Nawade
- Department of Plant Resources, College of Industrial Sciences, Kongju National University, Yesan 32439, Republic of Korea
| | - Chang-Yong Lee
- Department of Industrial and Systems Engineering, College of Engineering, Kongju National University, Cheonan 31080, Republic of Korea
| | - Eul Jai Myung
- Department of Plant Resources, College of Industrial Sciences, Kongju National University, Yesan 32439, Republic of Korea
| | - Yong-Jin Park
- Department of Plant Resources, College of Industrial Sciences, Kongju National University, Yesan 32439, Republic of Korea.
| |
Collapse
|
2
|
Yan M, Jiao G, Shao G, Chen Y, Zhu M, Yang L, Xie L, Hu P, Tang S. Chalkiness and premature controlled by energy homeostasis in OsNAC02 Ko-mutant during vegetative endosperm development. BMC PLANT BIOLOGY 2024; 24:196. [PMID: 38494545 PMCID: PMC10946104 DOI: 10.1186/s12870-024-04845-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 02/21/2024] [Indexed: 03/19/2024]
Abstract
BACKGROUND Chalkiness is a common phenotype induced by various reasons, such as abiotic stress or the imbalance of starch synthesis and metabolism during the development period. However, the reason mainly for one gene losing its function such as NAC (TFs has a large family in rice) which may cause premature is rarely known to us. RESULTS The Ko-Osnac02 mutant demonstrated an obviously early maturation stage compared to the wild type (WT) with 15 days earlier. The result showed that the mature endosperm of Ko-Osnac02 mutant exhibited chalkiness, characterized by white-core and white-belly in mature endosperm. As grain filling rate is a crucial factor in determining the yield and quality of rice (Oryza sativa, ssp. japonica), it's significant that mutant has a lower amylose content (AC) and higher soluble sugar content in the mature endosperm. Interestingly among the top DEGs in the RNA sequencing of N2 (3DAP) and WT seeds revealed that the OsBAM2 (LOC_Os10g32810) expressed significantly high in N2 mutant, which involved in Maltose up-regulated by the starch degradation. As Prediction of Protein interaction showed in the chalky endosperm formation in N2 seeds (3 DAP), seven genes were expressed at a lower-level which should be verified by a heatmap diagrams based on DEGs of N2 versus WT. The Tubulin genes controlling cell cycle are downregulated together with the MCM family genes MCM4 ( ↓), MCM7 ( ↑), which may cause white-core in the early endosperm development. In conclusion, the developing period drastically decreased in the Ko-Osnac02 mutants, which might cause the chalkiness in seeds during the early endosperm development. CONCLUSIONS The gene OsNAC02 which controls a great genetic co-network for cell cycle regulation in early development, and KO-Osnac02 mutant shows prematurity and white-core in endosperm.
Collapse
Affiliation(s)
- Mei Yan
- State Key Laboratory of Rice Biology, Key Laboratory of Rice Biology and Breeding of Ministry of Agriculture, China National Rice Research Institute, Hangzhou, 311400, China
| | - Guiai Jiao
- State Key Laboratory of Rice Biology, Key Laboratory of Rice Biology and Breeding of Ministry of Agriculture, China National Rice Research Institute, Hangzhou, 311400, China
| | - Gaoneng Shao
- State Key Laboratory of Rice Biology, Key Laboratory of Rice Biology and Breeding of Ministry of Agriculture, China National Rice Research Institute, Hangzhou, 311400, China
| | - Ying Chen
- State Key Laboratory of Rice Biology, Key Laboratory of Rice Biology and Breeding of Ministry of Agriculture, China National Rice Research Institute, Hangzhou, 311400, China
| | - Maodi Zhu
- State Key Laboratory of Rice Biology, Key Laboratory of Rice Biology and Breeding of Ministry of Agriculture, China National Rice Research Institute, Hangzhou, 311400, China
| | - Lingwei Yang
- State Key Laboratory of Rice Biology, Key Laboratory of Rice Biology and Breeding of Ministry of Agriculture, China National Rice Research Institute, Hangzhou, 311400, China
| | - Lihong Xie
- State Key Laboratory of Rice Biology, Key Laboratory of Rice Biology and Breeding of Ministry of Agriculture, China National Rice Research Institute, Hangzhou, 311400, China
| | - Peisong Hu
- State Key Laboratory of Rice Biology, Key Laboratory of Rice Biology and Breeding of Ministry of Agriculture, China National Rice Research Institute, Hangzhou, 311400, China
| | - Shaoqing Tang
- State Key Laboratory of Rice Biology, Key Laboratory of Rice Biology and Breeding of Ministry of Agriculture, China National Rice Research Institute, Hangzhou, 311400, China.
| |
Collapse
|
3
|
Aung KM, Oo WH, Maung TZ, Min MH, Somsri A, Nam J, Kim KW, Nawade B, Lee CY, Chu SH, Park YJ. Genomic landscape of the OsTPP7 gene in its haplotype diversity and association with anaerobic germination tolerance in rice. FRONTIERS IN PLANT SCIENCE 2023; 14:1225445. [PMID: 37560030 PMCID: PMC10407808 DOI: 10.3389/fpls.2023.1225445] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/07/2023] [Indexed: 08/11/2023]
Abstract
Early season flooding is a major constraint in direct-seeded rice, as rice genotypes vary in their coleoptile length during anoxia. Trehalose-6-phosphate phosphatase 7 (OsTPP7, Os09g0369400) has been identified as the genetic determinant for anaerobic germination (AG) and coleoptile elongation during flooding. We evaluated the coleoptile length of a diverse rice panel under normal and flooded conditions and investigated the Korean rice collection of 475 accessions to understand its genetic variation, population genetics, evolutionary relationships, and haplotypes in the OsTPP7 gene. Most accessions displayed enhanced flooded coleoptile lengths, with the temperate japonica ecotype exhibiting the highest average values for normal and flooded conditions. Positive Tajima's D values in indica, admixture, and tropical japonica ecotypes suggested balancing selection or population expansion. Haplotype analysis revealed 18 haplotypes, with three in cultivated accessions, 13 in the wild type, and two in both. Hap_1 was found mostly in japonica, while Hap-2 and Hap_3 were more prevalent in indica accessions. Further phenotypic performance of major haplotypes showed significant differences in flooded coleoptile length, flooding tolerance index, and shoot length between Hap_1 and Hap_2/3. These findings could be valuable for future selective rice breeding and the development of efficient haplotype-based breeding strategies for improving flood tolerance.
Collapse
Affiliation(s)
- Kyaw Myo Aung
- Department of Plant Resources, College of Industrial Sciences, Kongju National University, Yesan, Republic of Korea
| | - Win Htet Oo
- Department of Plant Resources, College of Industrial Sciences, Kongju National University, Yesan, Republic of Korea
| | - Thant Zin Maung
- Department of Plant Resources, College of Industrial Sciences, Kongju National University, Yesan, Republic of Korea
| | - Myeong-Hyeon Min
- Department of Plant Resources, College of Industrial Sciences, Kongju National University, Yesan, Republic of Korea
| | - Aueangporn Somsri
- Department of Plant Resources, College of Industrial Sciences, Kongju National University, Yesan, Republic of Korea
| | - Jungrye Nam
- Center for Crop Breeding on Omics and Artificial Intelligence, Kongju National University, Yesan, Republic of Korea
| | - Kyu-Won Kim
- Center for Crop Breeding on Omics and Artificial Intelligence, Kongju National University, Yesan, Republic of Korea
| | - Bhagwat Nawade
- Center for Crop Breeding on Omics and Artificial Intelligence, Kongju National University, Yesan, Republic of Korea
| | - Chang-Yong Lee
- Department of Industrial and Systems Engineering, College of Engineering, Kongju National University, Cheonan, Republic of Korea
| | - Sang-Ho Chu
- Center for Crop Breeding on Omics and Artificial Intelligence, Kongju National University, Yesan, Republic of Korea
| | - Yong-Jin Park
- Department of Plant Resources, College of Industrial Sciences, Kongju National University, Yesan, Republic of Korea
- Center for Crop Breeding on Omics and Artificial Intelligence, Kongju National University, Yesan, Republic of Korea
| |
Collapse
|
4
|
Chaudhry A, Hassan AU, Khan SH, Abbasi A, Hina A, Khan MT, Abdelsalam NR. The changing landscape of agriculture: role of precision breeding in developing smart crops. Funct Integr Genomics 2023; 23:167. [PMID: 37204621 DOI: 10.1007/s10142-023-01093-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 05/20/2023]
Abstract
Food plants play a crucial role in human survival, providing them essential nutrients. However, traditional breeding methods have not been able to keep up with the demands of the growing population. The improvement of food plants aims to increase yield, quality, and resistance to biotic and abiotic stresses. With CRISPR/Cas9, researchers can identify and edit key genes conferring desirable qualities in agricultural plants, including increased yield, enhanced product quality attributes, and increased tolerance to biotic and abiotic challenges. These modifications have enabled the creation of "smart crops" that exhibit rapid climatic adaptation, resistance to extreme weather conditions and high yield and quality. The use of CRISPR/Cas9 combined with viral vectors or growth regulators has made it possible to produce more efficient modified plants with certain conventional breeding methods. However, ethical and regulatory aspects of this technology must be carefully considered. Proper regulation and application of genome editing technology can bring immense benefits to agriculture and food security. This article provides an overview of genetically modified genes and conventional as well as emerging tools, including CRISPR/Cas9, that have been utilized to enhance the quality of plants/fruits and their products. The review also discusses the challenges and prospects associated with these techniques.
Collapse
Affiliation(s)
- Amna Chaudhry
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad, 38040, Pakistan
- Center for Advanced Studies in Agriculture and Food Security (CASAFS), University of Agriculture, Faisalabad, 38040, Pakistan
| | - Ahtsham Ul Hassan
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad, 38040, Pakistan
| | - Sultan Habibullah Khan
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad, 38040, Pakistan
- Center for Advanced Studies in Agriculture and Food Security (CASAFS), University of Agriculture, Faisalabad, 38040, Pakistan
| | - Asim Abbasi
- Department of Environmental Sciences, Kohsar University, Murree, 47150, Pakistan.
| | - Aiman Hina
- Soybean Research Institute, Ministry of Agriculture (MOA) Key Laboratory of Biology and Genetic Improvement of Soybean (General), MOA National Centre for Soybean Improvement, State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Muhammad Tajammal Khan
- Institute of Botany, University of the Punjab, Lahore, 54590, Pakistan
- Division of Science and Technology, Department of Botany, University of Education, Lahore, Pakistan
| | - Nader R Abdelsalam
- Agricultural Botany Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, 21531, Egypt
| |
Collapse
|
5
|
Jang YH, Park JR, Kim EG, Jan R, Asif S, Farooq M, Zhao DD, Kim KM. Efficient identification of palatability-related genes using QTL mapping in rice breeding. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:39. [PMID: 37312747 PMCID: PMC10248614 DOI: 10.1007/s11032-023-01392-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 05/02/2023] [Indexed: 06/15/2023]
Abstract
The gelatinization temperature of rice is an important factor in determining the eating and cooking quality, and it affects consumer preference. The alkali digestion value (ADV) is one of the main methods used to test the quality of rice and has a high correlation with the gelatinization temperature. For the development of high-quality rice, it is important to understand the genetic basis of palatability-related traits, and QTL analysis is a statistical method linking phenotypic data and genotype data and is an effective method to explain the genetic basis of variation in complex traits. QTL mapping related to the ADV of brown and milled rice was performed using the 120 Cheongcheong/Nagdong double haploid (CNDH) line. As a result, 12 QTLs related to ADV were detected, and 20 candidate genes were selected from the RM588-RM1163 region of chromosome 6 through screening by gene function analysis. The comparison of the relative expression level of candidate genes showed that OsSS1q6 is highly expressed in CNDH lines with high ADV in both brown rice and milled rice. In addition, OsSS1q6 has high homology with the starch synthase 1 protein and interacts with various starch biosynthesis-related proteins, such as GBSSII, SBE, and APL. Therefore, we suggest that OsSS1q6 identified through QTL mapping could be one of the various genes involved in the gelatinization temperature of rice by regulating starch biosynthesis. This study can be used as basic data for breeding high-quality rice and provides a new genetic resource that can increase the palatability of rice. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-023-01392-2.
Collapse
Affiliation(s)
- Yoon-Hee Jang
- Coastal Agriculture Research Institute, Kyungpook National University, Daegu, 41566 Korea
| | - Jae-Ryoung Park
- Coastal Agriculture Research Institute, Kyungpook National University, Daegu, 41566 Korea
- Crop Breeding Division, National Institute of Crop Science, Rural Development Administration, Wanju, 55365 Korea
| | - Eun-Gyeong Kim
- Coastal Agriculture Research Institute, Kyungpook National University, Daegu, 41566 Korea
| | - Rahmatullah Jan
- Coastal Agriculture Research Institute, Kyungpook National University, Daegu, 41566 Korea
| | - Saleem Asif
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566 Korea
| | - Muhammad Farooq
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566 Korea
| | - Dan-Dan Zhao
- Crop Foundation Research Division, National Institute of Crop Science, Rural Development Administration, Wanju, 55365 Korea
| | - Kyung-Min Kim
- Coastal Agriculture Research Institute, Kyungpook National University, Daegu, 41566 Korea
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566 Korea
| |
Collapse
|
6
|
Chen P, Lou G, Wang Y, Chen J, Chen W, Fan Z, Liu Q, Sun B, Mao X, Yu H, Jiang L, Zhang J, LV S, Xing J, Pan D, Li C, He Y. The genetic basis of grain protein content in rice by genome-wide association analysis. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:1. [PMID: 37312871 PMCID: PMC10248653 DOI: 10.1007/s11032-022-01347-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/02/2022] [Indexed: 06/15/2023]
Abstract
The grain protein content (GPC) of rice is an important factor that determines its nutritional, cooking, and eating qualities. To date, although a number of genes affecting GPC have been identified in rice, most of them have been cloned using mutants, and only a few genes have been cloned in the natural population. In this study, 135 significant loci were detected in a genome-wide association study (GWAS), many of which could be repeatedly detected across different years and populations. Four minor quantitative trait loci affecting rice GPC at four significant association loci, qPC2.1, qPC7.1, qPC7.2, and qPC1.1, were further identified and validated in near-isogenic line F2 populations (NIL-F2), explaining 9.82, 43.4, 29.2, and 13.6% of the phenotypic variation, respectively. The role of the associated flo5 was evaluated with knockdown mutants, which exhibited both increased grain chalkiness rate and GPC. Three candidate genes in a significant association locus region were analyzed using haplotype and expression profiles. The findings of this study will help elucidate the genetic regulatory network of protein synthesis and accumulation in rice through cloning of GPC genes and provide new insights on dominant alleles for marker-assisted selection in the genetic improvement of rice grain quality. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-022-01347-z.
Collapse
Affiliation(s)
- Pingli Chen
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan, 430070 China
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640 China
- Guangdong Rice Engineering Laboratory, Guangzhou, 510640 China
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou, 510640 China
| | - Guangming Lou
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan, 430070 China
| | - Yufu Wang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan, 430070 China
| | - Junxiao Chen
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, 430070 China
| | - Wengfeng Chen
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640 China
- Guangdong Rice Engineering Laboratory, Guangzhou, 510640 China
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou, 510640 China
| | - Zhilan Fan
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640 China
- Guangdong Rice Engineering Laboratory, Guangzhou, 510640 China
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou, 510640 China
| | - Qing Liu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640 China
- Guangdong Rice Engineering Laboratory, Guangzhou, 510640 China
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou, 510640 China
| | - Bingrui Sun
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640 China
- Guangdong Rice Engineering Laboratory, Guangzhou, 510640 China
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou, 510640 China
| | - Xingxue Mao
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640 China
- Guangdong Rice Engineering Laboratory, Guangzhou, 510640 China
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou, 510640 China
| | - Hang Yu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640 China
- Guangdong Rice Engineering Laboratory, Guangzhou, 510640 China
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou, 510640 China
| | - Liqun Jiang
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640 China
- Guangdong Rice Engineering Laboratory, Guangzhou, 510640 China
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou, 510640 China
| | - Jing Zhang
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640 China
- Guangdong Rice Engineering Laboratory, Guangzhou, 510640 China
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou, 510640 China
| | - Shuwei LV
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640 China
- Guangdong Rice Engineering Laboratory, Guangzhou, 510640 China
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou, 510640 China
| | - Junlian Xing
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640 China
- Guangdong Rice Engineering Laboratory, Guangzhou, 510640 China
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou, 510640 China
| | - Dajian Pan
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640 China
- Guangdong Rice Engineering Laboratory, Guangzhou, 510640 China
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou, 510640 China
| | - Chen Li
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640 China
- Guangdong Rice Engineering Laboratory, Guangzhou, 510640 China
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou, 510640 China
| | - Yuqing He
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan, 430070 China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640 China
- Guangdong Rice Engineering Laboratory, Guangzhou, 510640 China
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou, 510640 China
| |
Collapse
|
7
|
Zhang L, Dong W, Yao Y, Chen C, Li X, Yin B, Li H, Zhang Y. Analysis and Research on Starch Content and Its Processing, Structure and Quality of 12 Adzuki Bean Varieties. Foods 2022; 11:3381. [PMID: 36359994 PMCID: PMC9656587 DOI: 10.3390/foods11213381] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 10/17/2023] Open
Abstract
Investigating starch properties of different adzuki beans provides an important theoretical basis for its application. A comparative study was conducted to evaluate the starch content, processing, digestion, and structural quality of 12 adzuki bean varieties. The variation ranges of the 12 adzuki bean varieties with specific analyzed parameters, including the amylose/amylopectin (AM/AP) ratio, bean paste rate, water separation rate, solubility, swelling power and resistant starch (RS) content level, were 5.52-39.05%, 44.7-68.2%, 45.56-54.29%, 6.79-12.07%, 11.83-15.39%, and 2.02-14.634%, respectively. The crystallinity varied from 20.92 to 37.38%, belonging to type BC(The starch crystal type is mainly type C, supplemented by type B). In correlation analysis, red and blue represent positive and negative correlation, respectively. Correlation analysis indicated that the termination temperature of adzuki bean starch was positively correlated with AM/AP ratio. Therefore, the higher the melting temperature, the better the freeze-thaw stability. The 12 varieties were divided into Class I, Class II, and Class III by cluster analysis, based on application field. Class I was unsuitable for the diabetics' diet; Class II was suitable for a stabilizer; and Class III was suitable for bean paste, mixtures, and thickeners. The present study could provide a theoretical basis for their application in the nutritional and nutraceutical field.
Collapse
Affiliation(s)
- Lei Zhang
- Hebei Province Crop Growth Control Laboratory, Hebei Agricultural University, Baoding 071001, China
| | - Weixin Dong
- Teaching Support Department, Hebei Open University, Shijiazhuang 050080, China
| | - Yaya Yao
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Congcong Chen
- Hebei Province Crop Growth Control Laboratory, Hebei Agricultural University, Baoding 071001, China
| | - Xiangling Li
- College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology, Qinhuangdao 066600, China
| | - Baozhong Yin
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, China
| | - Huijing Li
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Yuechen Zhang
- Hebei Province Crop Growth Control Laboratory, Hebei Agricultural University, Baoding 071001, China
| |
Collapse
|
8
|
Banyal DK, Dixit H, Chaudhary J, Malannavar AB, Thakur N. Deciphering diversity at er loci for diversification of powdery mildew resistance in pea. Sci Rep 2022; 12:16037. [PMID: 36163338 PMCID: PMC9512827 DOI: 10.1038/s41598-022-19894-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 09/06/2022] [Indexed: 11/09/2022] Open
Abstract
Agricultural biotechnology aims to scrutinize the field crops which feed half of the world's population by improving their agronomic traits using various biotechnological tools. Pea- an important cash crop, rich in nutrients, but frequently infected with powdery mildew (fungal disease caused by Erysiphe pisi) that destroys the whole crop and causes economic loss for growers. We, therefore, targeted this research to find the pathogen-resistant pea lines and further decipher the diversity at er locus among resistant pea lines. Screening for resistant pea lines was done with Erysiphe pisi isolates (Genebank submission: KX455922.1) under the net house and greenhouse conditions. Molecular studies revealed that the Erysiphe resistant (er1) gene was present in 40 lines out of selected 50 pea lines and the mutational character was conferred up to 36 genotypes with 11 haplotype groups. The haplotype (gene) diversity (Hd) was found to be 0.5571 ± 0.099 SD and the nucleotide diversity (Pi) was 0.0160 ± 0.0042 SD Majority of resistant lines (67%) occurred in Hap-1, other remaining haplotypes (Hap 2-10) having 33% resistant lines, each showing characteristic nucleotide substitutions with respect to reference PsMLO1 gene; genotypes from these divergent haplotypes can be used in pea resistance breeding to avoid genetic homogeneity and genetic vulnerability.
Collapse
Affiliation(s)
- Devinder K Banyal
- Department of Plant Pathology, COA, CSKHPKV, Palampur, HP, 176061, India
| | - Himisha Dixit
- Department of Plant Pathology, COA, CSKHPKV, Palampur, HP, 176061, India
| | | | | | - Nisha Thakur
- Department of Plant Pathology, COA, CSKHPKV, Palampur, HP, 176061, India.
| |
Collapse
|
9
|
Editorial for the Special Issue, "Quality Assay, Processing and Bio-Function of Rice Products". Foods 2022; 11:foods11121755. [PMID: 35741953 PMCID: PMC9222352 DOI: 10.3390/foods11121755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 06/13/2022] [Indexed: 02/01/2023] Open
|
10
|
Liu K, Wang X, Liu H, Wu J, Liang F, Li S, Zhang J, Peng X. OsAT1, an anion transporter, negatively regulates grain size and yield in rice. PHYSIOLOGIA PLANTARUM 2022; 174:e13692. [PMID: 35482934 DOI: 10.1111/ppl.13692] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/22/2022] [Accepted: 04/22/2022] [Indexed: 06/14/2023]
Abstract
Improving the grain yield of rice is a central goal of basic and applied scientific research. Here, we identified an anion transporter, OsAT1, localized in the endoplasmic reticulum and Golgi. OsAT1 is highly expressed in flag, stem, and sheath as monitored using qRT-PCR and pOsAT1::GUS. Thousand-grain weight, grain weight per plant, and content of starch were significantly increased in OsAT1 knock-down mutants (OsAT1-Ri) but significantly decreased in OsAT1 overexpressed lines (OsAT1-OE). In addition, the grain weight per plant increased by 6.17% to 6.78% in OsAT1-RNAi lines, whereas it decreased by 45.93% to 46.76% in OsAT1-OE lines, compared to wild-type. Moreover, the copper content was noticeably reduced in flag leaf of OsAT1-Ri lines and increased in OsAT1-OE lines. RNA-sequencing analysis of OsAT1-OE lines revealed that the genes related to starch biosynthesis and metabolism pathway were enriched in the down-regulated category. Thus, our results suggest that knock-down of OsAT1 in rice possibly reduces copper accumulation and improves the accumulation of storage starch, hence, increasing the grain size and weight. OsAT1 may be a useful gene to consider for cereal breeding programs.
Collapse
Affiliation(s)
- Kun Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Xin Wang
- Key Laboratory of Molecular Biology and Gene Engineering of Jiangxi Province, School of Life Sciences, Nanchang University, Nanchang, China
| | - Hengchen Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Jiarui Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Feng Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Shaobo Li
- Key Laboratory of Molecular Biology and Gene Engineering of Jiangxi Province, School of Life Sciences, Nanchang University, Nanchang, China
| | - Jianjun Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Xinxiang Peng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| |
Collapse
|