1
|
Uribe E, Vega-Galvez A, Pasten A, Ah-Hen KS, Mejias N, Sepúlveda L, Poblete J, Gomez-Perez LS. Drying: A Practical Technology for Blueberries ( Vaccinium corymbosum L.)-Processes and their Effects on Selected Health-Promoting Properties. Antioxidants (Basel) 2024; 13:1554. [PMID: 39765882 PMCID: PMC11673246 DOI: 10.3390/antiox13121554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
The global dried blueberry market is steadily growing, driven by the creation of innovative blueberry-based products. This trend presents an opportunity to explore a previously untapped segment of the blueberry market in Chile. In this study, a comprehensive assessment of four drying techniques (hot-air drying [HAD], vacuum drying [VD], infrared drying [IRD], and freeze-drying [FD]) was conducted to determine best operating conditions and preserve the health-promoting properties of blueberries. Drying kinetics, proximate composition, color, anthocyanin content, individual phenols, and antioxidant, antiproliferative, and antidiabetic potential of blueberries were evaluated. VD showed the highest drying rates, reaching equilibrium moisture more rapidly (Deff value of 3.44 × 10-10 m2/s). Drying caused an increase in lipid content but a decrease in protein content. The color parameter L* increased in all dried samples, and C* reflected color intensification. FD best retained anthocyanin content, which decreased significantly in the other drying processes. Chlorogenic acid and rutin predominated in HAD, IRD, and FD samples. The antioxidant potential in ORAC assays increased for all drying methods but decreased in DPPH assays. Blueberry extracts from FD and HAD exhibited the greatest antiproliferative effect against A549 and H1299 cell lines, respectively. HAD showed the best inhibitory effect on α-glucosidase, with an IC50 value of 0.276 mg/mL, similar to acarbose (IC50 = 0.253 mg/mL). Given the significant retention of health-promoting properties and bioactive compounds in HAD-dried samples, this method is advisable as a sustainable option for drying blueberries in Chile.
Collapse
Affiliation(s)
- Elsa Uribe
- Food Engineering Department, Universidad de La Serena, Av. Raúl Bitrán 1305, La Serena 1700000, Chile; (E.U.); (A.P.); (N.M.); (L.S.); (J.P.)
- Instituto Multidisciplinario de Investigación y Postgrado, Universidad de La Serena, Av. Raúl Bitrán 1305, La Serena 1700000, Chile
| | - Antonio Vega-Galvez
- Food Engineering Department, Universidad de La Serena, Av. Raúl Bitrán 1305, La Serena 1700000, Chile; (E.U.); (A.P.); (N.M.); (L.S.); (J.P.)
| | - Alexis Pasten
- Food Engineering Department, Universidad de La Serena, Av. Raúl Bitrán 1305, La Serena 1700000, Chile; (E.U.); (A.P.); (N.M.); (L.S.); (J.P.)
| | - Kong Shun Ah-Hen
- Facultad de Ciencias Agrarias y Alimentarias, Instituto de Ciencia y Tecnología de los Alimentos, Universidad Austral de Chile, Valdivia 5090000, Chile;
| | - Nicol Mejias
- Food Engineering Department, Universidad de La Serena, Av. Raúl Bitrán 1305, La Serena 1700000, Chile; (E.U.); (A.P.); (N.M.); (L.S.); (J.P.)
| | - Lorena Sepúlveda
- Food Engineering Department, Universidad de La Serena, Av. Raúl Bitrán 1305, La Serena 1700000, Chile; (E.U.); (A.P.); (N.M.); (L.S.); (J.P.)
| | - Jacqueline Poblete
- Food Engineering Department, Universidad de La Serena, Av. Raúl Bitrán 1305, La Serena 1700000, Chile; (E.U.); (A.P.); (N.M.); (L.S.); (J.P.)
| | - Luis S. Gomez-Perez
- Centro de Biología Integrativa, Facultad de Ciencias, Universidad Mayor, Camino La Pirámide 5750, Santiago 8580745, Chile;
- Escuela Nutrición y Dietética, Facultad de Medicina y Ciencias de la Salud, Universidad Mayor, Camino La Pirámide 5750, Santiago 8580745, Chile
| |
Collapse
|
2
|
Mao C, Chen Y, Liu T, Ye P, Wang Y, Chen X, Fu H, Wang Y, Wang K. Freezing pre-treatment improves radio frequency explosion puffing (RFEP) quality by altering the cellular structure of purple sweet potato [Ipomoea batatas (L) Lam.]. Food Res Int 2024; 184:114265. [PMID: 38609243 DOI: 10.1016/j.foodres.2024.114265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/16/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024]
Abstract
Radio frequency explosion puffing (RFEP) is a novel oil-free puffing technique used to produce crispy textured and nutritious puffed snacks. This study aimed to investigate the effects of freezing at different temperatures (-20 °C, -40 °C, -80 °C) for14 h and freezing times (1 and 2 times) on the cellular structure of purple sweet potato and the quality of RFEP chips. The analysis of cell microstructure, conductivity, and rheology revealed that higher freezing temperatures and more freezing times resulted in increased damage to the cellular structure, leading to greater cell membrane permeability and decreased cell wall stiffness. However, excessive damage to cellular structure caused tissue structure to collapse. Compared with the control group (4 °C), the RFEP sample pre-frozen once at -40 °C had a 47.13 % increase in puffing ratio and a 61.93 % increase in crispness, while hardness decreased by 23.44 % (p < 0.05). There was no significant change in anthocyanin retention or color difference. X-ray microtomography demonstrated that the RFEP sample pre-frozen once at -40 °C exhibited a more homogeneous morphology and uniform pore distribution, resulting in the highest overall acceptability. In conclusion, freezing pre-treatment before RFEP can significantly enhance the puffing quality, making this an effective method for preparing oil-free puffing products for fruits and vegetables.
Collapse
Affiliation(s)
- Chao Mao
- Northwest A&F University, College of Food Science and Engineering, Yangling, Shanxi 712100, China
| | - Yurui Chen
- Northwest A&F University, College of Food Science and Engineering, Yangling, Shanxi 712100, China
| | - Tong Liu
- Northwest A&F University, College of Food Science and Engineering, Yangling, Shanxi 712100, China
| | - Pengfei Ye
- Northwest A&F University, College of Food Science and Engineering, Yangling, Shanxi 712100, China
| | - Yequn Wang
- Northwest A&F University, College of Food Science and Engineering, Yangling, Shanxi 712100, China
| | - Xiangwei Chen
- Northwest A&F University, College of Food Science and Engineering, Yangling, Shanxi 712100, China
| | - Hongfei Fu
- Northwest A&F University, College of Food Science and Engineering, Yangling, Shanxi 712100, China
| | - Yunyang Wang
- Northwest A&F University, College of Food Science and Engineering, Yangling, Shanxi 712100, China.
| | - Ke Wang
- Northwest A&F University, College of Food Science and Engineering, Yangling, Shanxi 712100, China; School of Food Science, Henan Institute of Science and Technology, 90 Eastern Hualan Avenue, Xinxiang 453003, China.
| |
Collapse
|
3
|
Tirado-Kulieva VA, Miranda-Zamora WR, Hernández-Martínez E, Pantoja-Tirado LR, Bazán-Tantaleán DL, Camacho-Orbegoso EW. Effect of antifreeze proteins on the freeze-thaw cycle of foods: fundamentals, mechanisms of action, current challenges and recommendations for future work. Heliyon 2022; 8:e10973. [PMID: 36262292 PMCID: PMC9573917 DOI: 10.1016/j.heliyon.2022.e10973] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/13/2022] [Accepted: 09/30/2022] [Indexed: 11/19/2022] Open
Abstract
Freezing is widely used in food preservation, but if not carried out properly, ice crystals can multiply (nucleation) or grow (recrystallization) rapidly. This also affects thawing, causing structural damage and affecting overall quality. The objective of this review is to comprehensively study the cryoprotective effect of antifreeze proteins (AFPs), highlighting their role in the freeze-thaw process of food. The properties of AFPs are based on their thermal hysteresis capacity (THC), on the modification of crystal morphology and on the inhibition of ice recrystallization. The mechanism of action of AFPs is based on the adsorption-inhibition theory, but the specific role of hydrogen and hydrophobic bonds/residues and structural characteristics is also detailed. Because of the properties of AFPs, they have been successfully used to preserve the quality of a wide variety of refrigerated and frozen foods. Among the limitations of the use of AFPs, the high cost of production stands out, but currently there are solutions such as the use the production of recombinant proteins, cloning and chemical synthesis. Although in vitro, in vivo and human studies have shown that AFPs are non-toxic, their safety remains a matter of debate. Further studies are recommended to expand knowledge about AFPs, to reduce costs in their large-scale production, to understand their interaction with other food compounds and their possible effects on the consumer.
Collapse
Affiliation(s)
| | | | | | - Lucia Ruth Pantoja-Tirado
- Carrera Profesional de Ingeniería en Industrias Alimentarias, Universidad Nacional Autónoma de Tayacaja Daniel Hernández Morillo, Peru
| | | | | |
Collapse
|
4
|
Martínez S, Carballo J. Physicochemical, Sensory and Nutritional Properties of Foods Affected by Processing and Storage. Foods 2021; 10:foods10122970. [PMID: 34945521 PMCID: PMC8701254 DOI: 10.3390/foods10122970] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 11/29/2021] [Indexed: 01/26/2023] Open
|