1
|
Chen M, Hu Z, Zheng H, Wang J, Xu X. Antimicrobial polysaccharide hydrogels embedded with methyl-β-cyclodextrin/thyme oil inclusion complexes for exceptional mechanical performance and chilled chicken breast preservation. Int J Biol Macromol 2024; 267:131586. [PMID: 38615861 DOI: 10.1016/j.ijbiomac.2024.131586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/02/2024] [Accepted: 04/11/2024] [Indexed: 04/16/2024]
Abstract
While hydrogels have potential for food packaging, limited research on hydrogels with excellent mechanical performance and antibacterial activity for preserving chicken breasts. Herein, we created antibacterial hydrogels by embedding methyl-β-cyclodextrin/thyme oil inclusion complexes (MCD/TO-ICs) into a polyvinyl alcohol matrix containing dendrobium polysaccharides and guar gum in varying ratios using freeze-thaw cycling method. The resulting hydrogels exhibited a more compact structure than those without MCD/TO-ICs, enhancing thermal stability and increasing glass transition temperature due to additional intermolecular interactions between polymer chains that inhibited chain movement. XRD analysis showed no significant changes in crystalline phase, enabling formation of a 3D network through abundant hydrogen bonding. Moreover, the hydrogel demonstrated exceptional durability, with a toughness of 350 ± 25 kJ/m3 and adequate tearing resistance of 340 ± 30 J/m2, capable of lifting 3 kg weight, 1200 times greater than the hydrogel itself. Additionally, the hydrogels displayed excellent antimicrobial activity and antioxidant properties. Importantly, the hydrogels effectively maintained TVB-N levels and microbial counts within acceptable ranges, preserving sensory properties and extending the shelf life of chilled chicken breasts by four days. This study highlights the potential of MCD/TO-IC-incorporated polysaccharide hydrogels as safe and effective active packaging solutions for preserving chilled chicken in food industry.
Collapse
Affiliation(s)
- Mingshan Chen
- Key Laboratory of Product Packaging and Logistics, Packaging Engineering Institute, College of Packaging Engineering, Jinan University, Qianshan Road 206, Zhuhai 519070, China
| | - Zhiyu Hu
- Key Laboratory of Product Packaging and Logistics, Packaging Engineering Institute, College of Packaging Engineering, Jinan University, Qianshan Road 206, Zhuhai 519070, China
| | - Haoyuan Zheng
- Key Laboratory of Product Packaging and Logistics, Packaging Engineering Institute, College of Packaging Engineering, Jinan University, Qianshan Road 206, Zhuhai 519070, China
| | - Jiesheng Wang
- Key Laboratory of Product Packaging and Logistics, Packaging Engineering Institute, College of Packaging Engineering, Jinan University, Qianshan Road 206, Zhuhai 519070, China
| | - Xiaowen Xu
- Key Laboratory of Product Packaging and Logistics, Packaging Engineering Institute, College of Packaging Engineering, Jinan University, Qianshan Road 206, Zhuhai 519070, China.
| |
Collapse
|
2
|
Luzardo S, Saadoun A, Cabrera MC, Terevinto A, Brugnini G, Rodriguez J, de Souza G, Rovira P, Rufo C. Effect of beef long-storage under different temperatures and vacuum-packaging conditions on meat quality, oxidation processes and microbial growth. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:1143-1153. [PMID: 37737475 DOI: 10.1002/jsfa.12999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 08/09/2023] [Accepted: 09/19/2023] [Indexed: 09/23/2023]
Abstract
BACKGROUND The global beef market demands the meat industry to ensure product quality and safety in markets that are often very distant. The present study aimed to evaluate the effects of chilled (CH, 120 d) and chilled-then-frozen (CHF, 28 d + 92 d) storage conditions of beef vacuum packaged (VP) and vacuum packaged with antimicrobial (VPAM) on meat quality, oxidative status and microbial loads. Treatments resulted from the combination of storage condition and packaging type: VP + CH, VP + CHF, VPAM + CH and VPAM + CHF. RESULTS Warner-Bratzler shear force values decreased in all treatments after 28 d of chilling. Except for VP + CH, L* values (lightness) of meat color did not differ in each treatment as the storage time increased. Meat from VP + CH had greater a* values than CHF treatments on day 120 of storage. A consumer panel did not detect differences in tenderness, flavor and overall liking between VP and VPAM beef, but they preferred CHF steaks rather than CH beef. TBARS values did not differ between VP and VPAM and between CH and CHF at any time during the storage period. At the end of storage time, all treatments except VP + CHF presented a greater concentration of thiols than at 48 h post-mortem. On day 120 of storage, VP + CH had greater catalase enzyme activity than CHF treatments while VP + CH and VP + CHF showed a greater superoxide dismutase activity than VPAM + CHF. Storage condition (CH or CHF) had a greater impact on microbial counts than the type of packaging. CONCLUSION Freezing meat after an ageing period represents a suitable strategy to extend beef storage life without a detrimental impact on its quality. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Santiago Luzardo
- Sistema Ganadero Extensivo y Agroalimentos, Instituto Nacional de Investigación Agropecuaria (INIA), Estación Experimental INIA Tacuarembó, Tacuarembó, Uruguay
| | - Ali Saadoun
- Facultad de Agronomía, Universidad de la República, Montevideo, Uruguay
- Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - María C Cabrera
- Facultad de Agronomía, Universidad de la República, Montevideo, Uruguay
- Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Alejandra Terevinto
- Facultad de Agronomía, Universidad de la República, Montevideo, Uruguay
- Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Giannina Brugnini
- Instituto Polo Tecnológico de Pando, Facultad de Química, Universidad de la República, Pando, Uruguay
| | - Jesica Rodriguez
- Instituto Polo Tecnológico de Pando, Facultad de Química, Universidad de la República, Pando, Uruguay
| | - Guillermo de Souza
- Sistema Ganadero Extensivo y Agroalimentos, Instituto Nacional de Investigación Agropecuaria (INIA), Estación Experimental INIA Tacuarembó, Tacuarembó, Uruguay
| | - Pablo Rovira
- Sistema Ganadero Extensivo y Arroz-Ganadería, Instituto Nacional de Investigación Agropecuaria (INIA), Treinta y Tres, Uruguay
| | - Caterina Rufo
- Instituto Polo Tecnológico de Pando, Facultad de Química, Universidad de la República, Pando, Uruguay
| |
Collapse
|
3
|
Yang X, Zhao D, Ge S, Bian P, Xue H, Lang Y. Alginate-based edible coating with oregano essential oil/β-cyclodextrin inclusion complex for chicken breast preservation. Int J Biol Macromol 2023; 251:126126. [PMID: 37541460 DOI: 10.1016/j.ijbiomac.2023.126126] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 07/13/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
A sodium alginate (SA) edible coating containing oregano essential oil (OEO)/β-cyclodextrin (β-CD) inclusion complexes (SA/OEO-MP coating) was developed to extend the shelf life of fresh chicken breast during refrigeration storage. First, OEO was inserted into the hydrophobic interior of β-CD to form an inclusion complex (OEO-MP) that maintained its excellent antioxidant and antibacterial activities. The formed OEO-MP was characterized using fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and scanning electron microscopy (SEM). In addition, thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) results demonstrated that β-CD could improve the thermal stability of OEO. The encapsulation efficiency reached 71.6 %, and OEO was released continuously from the OEO-MP. The lipid oxidation, total viable count (TVC) and sensory properties of chicken breasts were regularly monitored when OEO-MP was incorporated into the SA coating for chicken breast preservation. Compared with the uncoated group, the SA/OEO-MP-coated groups showed significantly reduced increases in pH, thiobarbituric acid reactive substances (TBARS), total volatile base nitrogen (TVB-N), and TVC, especially in the SA/OEO-MP1 group. In summary, the SA/OEO-MP coating could preserve the chicken breast by reducing lipid oxidation and inhibiting the proliferation of microorganisms. It would be developed as a prospective edible packaging for chicken preservation.
Collapse
Affiliation(s)
- Xiaoxi Yang
- Hebei Key Laboratory of Public Health Safety, School of Public Health, Hebei University, Baoding 071002, China.
| | - Dongxue Zhao
- Hebei Key Laboratory of Public Health Safety, School of Public Health, Hebei University, Baoding 071002, China
| | - Shaohui Ge
- Hebei Key Laboratory of Public Health Safety, School of Public Health, Hebei University, Baoding 071002, China
| | - Pengsha Bian
- Hebei Research Center for Geoanalysis, Baoding 071051, China
| | - Hongmei Xue
- Department of Clinical Nutrition, The First Hospital of Hebei Medical University, Shijiazhuang 050031, China
| | - Yumiao Lang
- Hebei Key Laboratory of Public Health Safety, School of Public Health, Hebei University, Baoding 071002, China.
| |
Collapse
|
4
|
Rovira P, Brugnini G, Rodriguez J, Cabrera MC, Saadoun A, de Souza G, Luzardo S, Rufo C. Microbiological Changes during Long-Storage of Beef Meat under Different Temperature and Vacuum-Packaging Conditions. Foods 2023; 12:foods12040694. [PMID: 36832769 PMCID: PMC9955083 DOI: 10.3390/foods12040694] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 02/09/2023] Open
Abstract
We evaluated a combination of two temperatures and two packaging materials for long-term storage of vacuum-packaged (VP) beef striploins. Microbial populations and microbiome composition were monitored during refrigerated storage (120 days between 0-1.5 °C) and refrigerated-then-frozen storage (28 days between 0-1.5 °C then 92 days at -20 °C) under low-O2 permeability VP and high-O2 permeability VP with an antimicrobial (VPAM). Pseudomonas (PSE) and Enterobacteriaceae (EB) counts in VPAM samples were significantly higher (p < 0.05) than in VP samples at 28, 45, 90, and 120 days of storage. Microbiome data showed that bacteria of the genera Serratia and Brochothrix were more abundant in VPAM samples at 120 days, while lactic acid bacteria (LAB) dominated in VP samples. Frozen temperatures inhibited microbial growth and maintained a relatively stable microbiome. Refrigerated and frozen VPAM samples showed the greatest difference in the predicted metabolic functions at the end of storage driven by the microbiome composition, dominated by PSE and LAB, respectively. Although no signs of visible meat deterioration were observed in any sample, this study suggests that VP meat refrigerated and then frozen achieved better microbiological indicators at the end of the storage period.
Collapse
Affiliation(s)
- Pablo Rovira
- Sistema Ganadero Extensivo y Arroz-Ganadería, Instituto Nacional de Investigación Agropecuaria (INIA), Ruta 8 km 281, Treinta y Tres 33000, Uruguay
| | - Giannina Brugnini
- Instituto Polo Tecnológico de Pando, Facultad de Química, Universidad de la República, By Pass de Pando y Ruta 8, Pando 91000, Uruguay
| | - Jesica Rodriguez
- Instituto Polo Tecnológico de Pando, Facultad de Química, Universidad de la República, By Pass de Pando y Ruta 8, Pando 91000, Uruguay
| | - María C. Cabrera
- Facultad de Agronomía Udelar, Avenida Garzón 861, Montevideo 12900, Uruguay
- Facultad de Ciencias, Udelar, Calle Iguá 4225, Montevideo 11400, Uruguay
| | - Ali Saadoun
- Facultad de Agronomía Udelar, Avenida Garzón 861, Montevideo 12900, Uruguay
- Facultad de Ciencias, Udelar, Calle Iguá 4225, Montevideo 11400, Uruguay
| | - Guillermo de Souza
- Sistema Ganadero Extensivo y Agroalimentos, Instituto Nacional de Investigación Agropecuaria (INIA), Estación Experimental INIA Tacuarembó, Ruta 5 km 386, Tacuarembó 45000, Uruguay
| | - Santiago Luzardo
- Sistema Ganadero Extensivo y Agroalimentos, Instituto Nacional de Investigación Agropecuaria (INIA), Estación Experimental INIA Tacuarembó, Ruta 5 km 386, Tacuarembó 45000, Uruguay
- Correspondence: (S.L.); (C.R.)
| | - Caterina Rufo
- Instituto Polo Tecnológico de Pando, Facultad de Química, Universidad de la República, By Pass de Pando y Ruta 8, Pando 91000, Uruguay
- Correspondence: (S.L.); (C.R.)
| |
Collapse
|
5
|
Patil MB, Mathad SN, Patil AY, Khan A, Hussein MA, Alosaimi AM, Asiri AM, Manikandan A, Khan MMA. Functional Properties of Grapefruit Seed Extract Embedded Blend Membranes of Poly(vinyl alcohol)/Starch: Potential Application for Antiviral Activity in Food Safety to Fight Against COVID-19. JOURNAL OF POLYMERS AND THE ENVIRONMENT 2022; 31:2519-2533. [PMID: 36590138 PMCID: PMC9795453 DOI: 10.1007/s10924-022-02742-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 12/12/2022] [Indexed: 05/12/2023]
Abstract
The poly(vinyl alcohol) (PVA) and starch-based polymeric films with a ratio of 2:8 were prepared using solution casting followed by a solvent evaporation method. Four types of membranes with varied concentrations of grapefruit seed extract (GSE) i.e., 2.5-10 wt% was incorporated in the films. The prepared membranes were assessed for transparency test, mechanical properties, surface morphology, permeability test for O2, and antimicrobial properties. The PVA/starch-10% GSE loaded film showed excellent mechanical properties showing highest 1344 ± 0.7% elongation at break but poor optical transparency with 53.8% to 68.61%. The Scanning Electron Microscopic study reveals the good compatibility between the PVA, Starch, and GSE. The gas permeability test reveals that the prepared films have shown good resistance to the O2 permeability 0.0326-0.316 Barrer at 20 kg/cm2 feed pressure for the prepared membranes showing excellent performance. By adding the little amount of GSE into the PVA/starch blend membranes showed promising antimicrobial efficacy against MNV-1. For 4 h. incubation, PVA/starch blend membranes containing 2.5%, 5%, and 10% GSE caused MNV-1 reductions of 0.92, 1.89, and 2.27 log PFU/ml, respectively. Similarly, after 24 h, the 5% and 10% GSE membranes reduced MNV-1 titers by 1.90 and 3.26 log PFU/ml, respectively. Antimicrobial tests have shown excellent performance to resist microorganisms. The water uptake capacity of the membrane is found 72% for the PVA/starch pristine membrane and is reduced to 32% for the 10% GSE embedded membrane. Since the current pandemic situation due to COVID-19 occurred by SARSCOV2, the prepared GSE incorporated polymeric blend films are the rays of hope in the packaging of food stuff.
Collapse
Affiliation(s)
- Mallikarjunagouda B. Patil
- Bharat Ratna Prof. CNR Rao Research Centre, Basaveshwar Science College, Bagalkot, Karnataka 587101 India
| | - Shridhar N. Mathad
- Department of Engineering Physics, K.L.E Institute of Technology, Hubballi, Karnataka, 580027 India
| | - Arun Y. Patil
- School of Mechanical Engineering, KLE Technological University, Vidya Nagar, Hubballi, Karnataka 580031 India
| | - Anish Khan
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| | - Mahmoud Ali Hussein
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
- Chemistry Department, Faculty of Science, Assiut University, Assiut, 71516 Egypt
| | - Abeer M. Alosaimi
- Department of Chemistry, Faculty of Science, Taif University, P.O. Box 11099, Taif, 21944 Saudi Arabia
| | - Abdullah M. Asiri
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| | - A. Manikandan
- Department of Chemistry, Bharath Institute of Higher Education and Research (BIHER) Bharath University, Chennai, Tamil Nadu 600073 India
| | - Mohammad Mujahid Ali Khan
- Applied Science and Humanities Section, University Polytechnic, Faculty of Engineering and Technology, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
6
|
Gabrić D, Kurek M, Ščetar M, Brnčić M, Galić K. Effect of Non-Thermal Food Processing Techniques on Selected Packaging Materials. Polymers (Basel) 2022; 14:polym14235069. [PMID: 36501462 PMCID: PMC9741052 DOI: 10.3390/polym14235069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/24/2022] Open
Abstract
In the last decade both scientific and industrial community focuses on food with the highest nutritional and organoleptic quality, together with appropriate safety. Accordingly, strong efforts have been made in finding appropriate emerging technologies for food processing and packaging. Parallel to this, an enormous effort is also made to decrease the negative impact of synthetic polymers not only on food products (migration issues) but on the entire environment (pollution). The science of packaging is also subjected to changes, resulting in development of novel biomaterials, biodegradable or not, with active, smart, edible and intelligent properties. Combining non-thermal processing with new materials opens completely new interdisciplinary area of interest for both food and material scientists. The aim of this review article is to give an insight in the latest research data about synergies between non-thermal processing technologies and selected packaging materials/concepts.
Collapse
|
7
|
Sabzipour-Hafshejani F, Mirzapour-Kouhdasht A, Khodaei D, Taghizadeh MS, Garcia-Vaquero M. Impact of Whey Protein Edible Coating Containing Fish Gelatin Hydrolysates on Physicochemical, Microbial, and Sensory Properties of Chicken Breast Fillets. Polymers (Basel) 2022; 14:polym14163371. [PMID: 36015628 PMCID: PMC9414817 DOI: 10.3390/polym14163371] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/11/2022] [Accepted: 08/16/2022] [Indexed: 11/25/2022] Open
Abstract
This study aims to research the impact of coatings containing whey protein (WP), fish gelatin hydrolysates (FGH), and both compounds together (WP + FGH) on the shelf-life of chicken breast fillets over the course of 16 days of cold storage (4 °C, 4-day intervals), as assessed by their physicochemical, microbiological, and sensory properties. Overall, cooking loss, pH value, total volatile base nitrogen, free fatty acids, peroxide value, and thiobarbituric acid reactive substances increased with storage time in all samples. WP + FGH coated samples had significantly lower variation in all these parameters over the time of storage compared to other coated samples (WP and FGH), while these parameters increased greatly in control (uncoated) samples. WP + FGH coating also resulted in reduced bacterial counts of total mesophilic, aerobic psychrotrophic, and lactic acid bacteria compared to other coated and uncoated samples. The sensory evaluation revealed no differences in the panelists’ overall acceptance at day 0 of storage between samples. The samples were considered “non-acceptable” by day 8 of storage; however, WP + FGH coated samples maintained an overall higher acceptability score for the sensory attributes evaluated by the panelists. Overall, this study shows the potential of WP + FGH coatings for prolonging the shelf-life of chicken breast fillets.
Collapse
Affiliation(s)
- Forouzan Sabzipour-Hafshejani
- Department of Natural Resources and Environmental Engineering, School of Agriculture, Shiraz University, Shiraz 71441-65186, Iran
| | - Armin Mirzapour-Kouhdasht
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, D04 V1W8 Dublin, Ireland
| | - Diako Khodaei
- Department of Sport, Exercise and Nutrition, Atlantic Technological University, ATU Galway, H91 T8NW Galway, Ireland
| | | | - Marco Garcia-Vaquero
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, D04 V1W8 Dublin, Ireland
- Correspondence: ; Tel.: +353-(01)-7162-513
| |
Collapse
|
8
|
Developing Edible Starch Film Used for Packaging Seasonings in Instant Noodles. Foods 2021; 10:foods10123105. [PMID: 34945656 PMCID: PMC8700853 DOI: 10.3390/foods10123105] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/02/2021] [Accepted: 12/08/2021] [Indexed: 02/06/2023] Open
Abstract
Edible starch-based film was developed for packaging seasoning applied in instant noodles. The edible film can quickly dissolve into hot water so that the seasoning bag can mix in the soup of instant noodles during preparation. To meet the specific requirements of the packaging, such as reasonable high tensile properties, ductility under arid conditions, and low gas permeability, hydroxypropyl cornstarch with various edible additives from food-grade ingredients were applied to enhance the functionality of starch film. In this work, xylose was used as a plasticizer, cellulose crystals were used as a reinforcing agent, and laver was used to decrease gas permeability. The microstructures, interface, and compatibility of various components and film performance were investigated using an optical microscope under polarized light, scanning electron microscope, gas permeability, and tensile testing. The relationship was established between processing methodologies, microstructures, and performances. The results showed that the developed starch-based film have a modulus of 960 MPa, tensile strength of 36 Mpa with 14% elongation, and water vapor permeability less than 5.8 g/m2.h under 20% RH condition at room temperature (25 °C), which meets the general requirements of the flavor bag packaging used in instant noodles.
Collapse
|