1
|
Li W, Wang Q, Huan H, Wu G, Jin Q, Zhang Y, Wang X. Characterization of Volatile Compounds and Odorants in Different Sichuan Pepper Varieties in Tallow Hotpot. Foods 2025; 14:627. [PMID: 40002071 PMCID: PMC11854310 DOI: 10.3390/foods14040627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/04/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
Sichuan pepper plays a vital role in enhancing the flavor of hotpot. However, the specific flavor compounds involved are still unclear. In this study, the key aroma components of Sichuan pepper tallow hotpot were explored. Six aroma attributes were evaluated by quantitative descriptive sensory analysis (QDA). Gas chromatography-mass spectrometry (GC-MS) identified 56 compounds. Among them, a total of 27 aroma-active compounds were identified by gas chromatography-olfactometry (GC-O) and aroma extract dilution analysis (AEDA). Sixteen aroma-active compounds were determined using odor activity values (OAVs) ≥ 1. Linalool, linalyl acetate, D-limonene, sabinene, β-myrcene, eucalyptol, α-terpineol, terpinen-4-ol, acetic acid, (E,E)-2,4-decadienal, (E)-2-heptenal, and others were identified as the key aroma compounds. Chemometrics analysis indicated that the aroma of green Sichuan pepper tallow hotpot was green, and the aroma of different red Sichuan pepper tallow hotpots varied significantly. The research results serve as a foundation for the quality control and production of the hotpot industry.
Collapse
Affiliation(s)
- Wenhua Li
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (W.L.); (Q.W.); (H.H.); (G.W.); (Q.J.)
| | - Qiaojun Wang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (W.L.); (Q.W.); (H.H.); (G.W.); (Q.J.)
| | - Huilin Huan
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (W.L.); (Q.W.); (H.H.); (G.W.); (Q.J.)
| | - Gangcheng Wu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (W.L.); (Q.W.); (H.H.); (G.W.); (Q.J.)
| | - Qingzhe Jin
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (W.L.); (Q.W.); (H.H.); (G.W.); (Q.J.)
| | - Youfeng Zhang
- Department of Flavor Chemistry, Institute of Food Science and Biotechnology, University of Hohenheim, Fruwirthstr. 12, 70599 Stuttgart, Germany
| | - Xingguo Wang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (W.L.); (Q.W.); (H.H.); (G.W.); (Q.J.)
| |
Collapse
|
2
|
Wen J, Xiang Q, Guo J, Zhang J, Yang N, Huang Y, Chen Y, Hu T, Rao C. Pharmacological activities of Zanthoxylum L. plants and its exploitation and utilization. Heliyon 2024; 10:e33207. [PMID: 39022083 PMCID: PMC11252797 DOI: 10.1016/j.heliyon.2024.e33207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/10/2024] [Accepted: 06/17/2024] [Indexed: 07/20/2024] Open
Abstract
The study aims to provide an up-to-date review at the advancements of the investigations on the ethnopharmacology, phytochemistry, pharmacological effect and exploitation and utilizations of Zanthoxylum L. Besides, the possible tendency and perspective for future research of this plant are discussed, as well. This article uses "Zanthoxylum L." "Zanthorylum bungeanum" as the keywords and collects relevant information on Zanthoxylum L. plants through electronic searches (Elsevier, PubMed, ACS, Web of Science, Science Direct, CNKI, Google Scholar), relevant books, and classic literature about Chinese herb. The plants of this genus are rich in volatile oils, alkaloids, amides, lignans, coumarins and organic acids, and has a wide range of pharmacological activities, including but not limited to anti-inflammatory, analgesic, anti-tumor, hypoglycemic, hypolipidemic, antioxidant and anti-infectious. This article reviewed both Chinese and international research progress on the active ingredients and pharmacological activities of Zanthoxylum L. as well as the applications of this genus in the fields of food, medicinal and daily chemicals, and clarified the material basis of its pharmacological activities. Based on traditional usage, phytochemicals, and pharmacological properties, of Zanthoxylum L. species, which indicate that they possess diverse bioactive metabolites with interesting bioactivities. Zanthoxylum L. is a potential medicinal and edible plant with diverse pharmacological effects. Due to its various advantages, it may have vast application potential in the food and medicinal industries and daily chemicals. Nonetheless, the currently available data has several gaps in understanding the herbal utilization of Zanthoxylum L. Thus, further research into their toxicity, mechanisms of actions of the isolated bioactive metabolites, as well as scientific connotations between the traditional medicinal uses and pharmacological properties is required to unravel their efficacy in therapeutic potential for safe clinical application.
Collapse
Affiliation(s)
- Jiayu Wen
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Qiwen Xiang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Jiafu Guo
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Jian Zhang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Nannan Yang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Yan Huang
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Yan Chen
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Tingting Hu
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Chaolong Rao
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
- R&D Center for Efficiency, Safety and Application in Chinese Materia Medica with Medical and Edible Values, School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| |
Collapse
|
3
|
Jia Y, Wang C, Zhang Y, Deng W, Ma Y, Ma J, Han G. The Flavor Characteristics and Metabolites of Three Commercial Dried Jujube Cultivars. Foods 2024; 13:1193. [PMID: 38672867 PMCID: PMC11048840 DOI: 10.3390/foods13081193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/24/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
To understand the flavor and metabolite differences between the three commercial dried jujube cultivars Huizao (HZ), Hamazao 1 (HMZ), and Qiyuexian (QYX), their soluble sugars, organic acids, volatiles, and metabolites were systematically investigated. The results show that sucrose and malic acid were the main soluble sugar and organic acids contained in these dried jujubes, respectively. Sucrose (573.89 mg/g DW) had the highest presence in HZ, and the total sugar content (898.33 mg/g DW) was the highest in QYX. Both of these had a low total acid content, resulting in relatively high sugar-acid ratios (105.49 and 127.86, respectively) compared to that of HMZ (51.50). Additionally, 66 volatile components were detected in the 3 jujubes. These mainly included acids, aldehydes, esters, and ketones (90.5-96.49%). Among them, (E)-2-nonenal, (E)-2-decenal, heptanal, decanal, nonanal, and octanal were identified as the key aromatic substances of the dried jujubes, and their contents were the highest in HMZ. Moreover, 454 metabolites were identified, including alkaloids, amino acids, flavonoids, lipids, nucleotides, and terpenoids. The highest contents of flavonoids (5.6%) and lipids (24.9%) were detected in HMZ, the highest contents of nucleotides (10.2%) and alkaloids (27%) were found in QYX, and the contents of saccharides (5.7%) and amino acids (23.6%) were high in HZ. Overall, HZ, HMZ, and QYX significantly differ in their flavor and nutrition. HZ tastes better, HMZ is more fragrant, and QYX and HMZ possess higher nutritional values.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Gang Han
- College of Forestry, Northwest A&F University, Xianyang 712100, China; (Y.J.); (C.W.); (Y.Z.); (W.D.); (Y.M.); (J.M.)
| |
Collapse
|
4
|
Ma Z, Liu G, Yang Z, Zhang G, Sun L, Wang M, Ren X. Species Differentiation and Quality Evaluation for Atractylodes Medicinal Plants by GC/MS Coupled with Chemometric Analysis. Chem Biodivers 2023; 20:e202300793. [PMID: 37485567 DOI: 10.1002/cbdv.202300793] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/20/2023] [Accepted: 07/20/2023] [Indexed: 07/25/2023]
Abstract
The utilization of rhizomes from the genus Atractylodes has been challenging due to their closely related origins. In this study, we developed an analytical strategy to differentiate Atractylodes lancea (A. lancea), Atractylodes chinensis (A. chinensis), Atractylodes japonica (A. japonica), and Atractylodes macrocephala (A. macrocephala), and compared their volatile compositions. Gas chromatography-mass spectrometry (GC/MS) was used to analyze the volatile profiles of essential oils extracted from 59 batches of samples. Chemometric methods enabled a better understanding of the differences in volatile oils between the four species and identified significant components affecting their classification and quality. A total of 50 volatile components were identified from the essential oils by GC/MS. Unsupervised and supervised chemometric analyses accurately distinguished A. lancea, A. chinensis, A. japonica, and A. macrocephala. Furthermore, five characteristic chemical markers, namely hinesol, β-eudesmol, atractylon, atractylodin and atractylenolide I, were obtained, and their respective percentage contents in individual species and samples were determined. This study provides a valuable reference for the quality evaluation of medicinal plants with essential oils and holds significance for species differentiation and the rational clinical application of Atractylodes herbs.
Collapse
Affiliation(s)
- Zicheng Ma
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Guoqiang Liu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Zijie Yang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Guoqin Zhang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Lili Sun
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Meng Wang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xiaoliang Ren
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| |
Collapse
|
5
|
Zheng T, Zeng HT, Sun BY, Liu SM. Multi-environment evaluations across ecological regions reveal climate and soil effects on amides contents in Chinese prickly ash peels (Zanthoxylum bungeanum Maxim.). BMC PLANT BIOLOGY 2023; 23:313. [PMID: 37308832 DOI: 10.1186/s12870-023-04328-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/04/2023] [Indexed: 06/14/2023]
Abstract
BACKGROUND Environmental factors difference is the key factor for the difference in the production, transformation and accumulation of effective components in plants. UPLC-MS/MS and multivariate statistical methods were applied to describe the region difference of amides compounds in Chinese prickly ash peels from different regions and their correlation with climatic factors and soil factors. RESULTS Amides compounds contents were significantly higher in high altitude areas, with obvious altitude change trend. Two ecotypes were classified based on the amides compounds contents, one was the high altitude-cool type from Qinghai, Gansu, Sichuan and western Shaanxi province, and the other one was low altitude-warm type from eastern Shaanxi, Shanxi, Henan, Hebei and Shandong province. Amides compounds content were negatively correlated with annual mean temperature, max temperature of warmest month, mean temperature of wettest quarter and mean temperature of warmest quarter (P < 0.01). Except for hydroxy-γ-sanshool and ZP-amide A, the residual amides contents were significantly positively correlated with organic carbon, available nitrogen, phosphorus and potassium in soil and negatively correlated with soil bulk density. Low temperature, low precipitation and high organic carbon in soil were conducive to amides accumulation. CONCLUSIONS This study aided in site specific exploration of high amides contents yielding samples, enriched the environment factors effects on amides compounds, and provided scientific foundation for the improvement of Chinese prickly ash peels quality and the location of high-quality production areas.
Collapse
Affiliation(s)
- Tao Zheng
- Shaanxi University of Technology, School of Biological Science and Engineering, Hanzhong, 723001, China
- Qinba State Key Laboratory of Biological Resources and Ecological Environment (Incubation),, Hanzhong, 723001, China
- Qinba Mountain Area Collaborative Innovation Center of Bioresources Comprehensive Development, Hanzhong, 723001, China
| | - Hai-Tao Zeng
- Shaanxi University of Technology, School of Biological Science and Engineering, Hanzhong, 723001, China.
- Qinba State Key Laboratory of Biological Resources and Ecological Environment (Incubation),, Hanzhong, 723001, China.
- Qinba Mountain Area Collaborative Innovation Center of Bioresources Comprehensive Development, Hanzhong, 723001, China.
| | - Bing-Yin Sun
- Yangling Vocational &Technical College, Yangling, 712100, China
| | - Shu-Ming Liu
- College of Science, Northwest Agriculture and Forestry University, Yangling, 712100, China.
| |
Collapse
|
6
|
Mutinda ES, Kimutai F, Mkala EM, Waswa EN, Odago WO, Nanjala C, Ndungu CN, Gichua MK, Njire MM, Gituru RW, Hu GW. Ethnobotanical uses, phytochemistry and pharmacology of pantropical genus Zanthoxylum L. (Rutaceae): An update. JOURNAL OF ETHNOPHARMACOLOGY 2023; 303:115895. [DOI: https:/doi.org/10.1016/j.jep.2022.115895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
|
7
|
Mutinda ES, Kimutai F, Mkala EM, Waswa EN, Odago WO, Nanjala C, Ndungu CN, Gichua MK, Njire MM, Gituru RW, Hu GW. Ethnobotanical uses, phytochemistry and pharmacology of pantropical genus Zanthoxylum L. (Rutaceae): An update. JOURNAL OF ETHNOPHARMACOLOGY 2023; 303:115895. [PMID: 36513263 DOI: 10.1016/j.jep.2022.115895] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/24/2022] [Accepted: 10/30/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Plants have been used in various parts of the world to treat various diseases. The genus Zanthoxylum L. (Rutaceae) is the second largest genus of this family and comprises approximately 225-549 species distributed in the tropical and temperate regions of the world. Plants of this genus are trees and shrubs with various applications in folklore medicine for food, medicine, construction, and other uses. AIM OF THE REVIEW The goal of this review is to give an updated data on the ethnobotanical applications, phytochemistry, and pharmacology of the Zanthoxylum species to investigate their medicinal potential and identify research gaps for future research studies. MATERIALS AND METHODS Data was obtained through a systematic search of published literature and online databases such as Google Scholar, Web of Science, PubMed, Science Direct, and Sci-Finder. The botanical names were confirmed using the World Flora Online and chemical structures were drawn using the ChemBio Draw Ultra Version 14.0 Software. RESULTS The Zanthoxylum species have a wide use in different parts of the continents as a remedy for various diseases such as digestive diseases, gastrointestinal disorders, venereal diseases, respiratory diseases, rheumatism, bacterial diseases, viral, and other diseases. Various parts of the plant comprising fruits, seeds, twigs, leaves, oils, and stems are administered singly or in the form of decoction, infusion, powder, paste, poultice, juice, or mixed with other medicinal plants to cure the disease. More than 400 secondary metabolites have been isolated and characterized in this genus with various biological activities, which comprise alkaloids, flavonoids, coumarins, lignans, alcohols, fatty acids, amides, sesquiterpenes, monoterpenes, and hydrocarbons. The crude extracts, fractions, and chemical compounds isolated from the genus have demonstrated a wide range of biological activities both in vivo and in vitro, including; anti-cancer, antimicrobial, anti-sickling, hepatoprotective, antipyretic, antitumor, and other pharmacological activities. CONCLUSION This genus has demonstrated an array of phytoconstituents with therapeutic potential. The ethnobotanical uses of this genus have been confirmed in modern pharmacological research. This genus is a potential source for modern drug discovery and health care products. Further and extensive research is therefore required on the safety approval and therapeutic application of the species of this genus as well as clinical trials and pharmacokinetic studies.
Collapse
Affiliation(s)
- Elizabeth Syowai Mutinda
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Festus Kimutai
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Elijah Mbandi Mkala
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Emmanuel Nyongesa Waswa
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Wyclif Ochieng Odago
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Consolata Nanjala
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Caroline Njambi Ndungu
- Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000-00200, Nairobi, Kenya.
| | - Moses Kirega Gichua
- Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000-00200, Nairobi, Kenya.
| | - Moses Muguci Njire
- Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000-00200, Nairobi, Kenya.
| | - Robert Wahiti Gituru
- Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000-00200, Nairobi, Kenya.
| | - Guang-Wan Hu
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
8
|
Pei Q, Liu Y, Peng S. Fatty Acid Profiling in Kernels Coupled with Chemometric Analyses as a Feasible Strategy for the Discrimination of Different Walnuts. Foods 2022; 11:foods11040500. [PMID: 35205977 PMCID: PMC8871327 DOI: 10.3390/foods11040500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/07/2022] [Accepted: 02/07/2022] [Indexed: 02/04/2023] Open
Abstract
Walnuts have high oil content in their kernels, and they have attracted considerable attention in the food, beverage, nutrient, and health fields because of their delicious taste and potential health benefits. Fatty acid profiles of kernels vary depending on walnuts species, ontogenic variations, and planting environments. To determine the key indicators that can be used to distinguish different walnuts using chemometric analyses, the fatty acid compositions and contents of 72 walnut samples were measured and evaluated. Three fatty acids, oleic acid (21.66%), linoleic acid (56.40%), and linolenic acid (10.50%), were the most common fatty acid components in the kernels. Palmitic acid and linolenic acid in kernels were found to be indicators to rank the walnuts into five levels. Three groups were identified based on of several chemometrics. Oleic acid in kernels was typical fatty acid that could be used to distinguish three walnut groups based on the results of discriminant analysis, while oleic acid and linoleic acid were key differential fatty acids on the discrimination of each group based on the result of orthogonal partial least squares discriminant analysis. This study provides information on how to classify walnuts from different geographical locations based on kernel fatty acid profiling and provides an approach to identify possible adulterations in walnuts on the markets. Moreover, the results are potentially relevant to quality assessments of walnuts.
Collapse
|