1
|
Ávila-Reyes SV, Jiménez-Aparicio AR, Melgar-Lalanne G, Fajardo-Espinoza FS, Hernández-Sánchez H. Mezcal: A Review of Chemistry, Processing, and Potential Health Benefits. Foods 2025; 14:1408. [PMID: 40282809 PMCID: PMC12027386 DOI: 10.3390/foods14081408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Revised: 04/06/2025] [Accepted: 04/10/2025] [Indexed: 04/29/2025] Open
Abstract
Mezcal is a Mexican alcoholic beverage elaborated by the distillation of fermented maguey (Agave genus) juice. In Mexico, there is an extensive variety of fermented beverages that embody many of the cultural traditions of this country. They are associated with environmental factors, naturally occurring microbiota, and the local availability of raw materials. Fermentation processes for the elaboration of ancestral beverages are an antique technology used by ethnic groups since pre-Hispanic times; however, these beverages are currently being studied with renewed attention as a source of prebiotics, probiotics, synbiotics, and postbiotics. An important sector of these products is Agave beverages, such as pulque, tequila, and mezcal. Despite the increasing demand for the last beverage, there are still relatively few studies about the chemistry, biotechnology, and health benefits of mezcal. The main aspects considered in this document are the definitions used in the mezcal industry, characteristics of wild and cultivated Agave species and varieties, mezcal elaboration technology (including juice extraction, fermentation, distillation, and aging), and potential health benefits related to mezcal, including prebiotics and probiotics, and bioactive compounds, such as phenolics and alcohol. These compounds can make mezcal a potentially functional beverage when consumed moderately.
Collapse
Affiliation(s)
- Sandra Victoria Ávila-Reyes
- Centro de Desarrollo de Productos Bióticos, Instituto Politécnico Nacional, Yautepec 62731, Mexico; (S.V.Á.-R.); (A.R.J.-A.)
| | | | | | | | | |
Collapse
|
2
|
Soth S, Hampton JG, Alizadeh H, Wakelin SA, Mendoza-Mendoza A. Microbiomes in action: multifaceted benefits and challenges across academic disciplines. Front Microbiol 2025; 16:1550749. [PMID: 40170921 PMCID: PMC11958995 DOI: 10.3389/fmicb.2025.1550749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 02/24/2025] [Indexed: 04/03/2025] Open
Abstract
Microbiomes combine the species and activities of all microorganisms living together in a specific habitat. They comprise unique ecological niches with influences that scale from local to global ecosystems. Understanding the connectivity of microbiomes across academic disciplines is important to help mitigate global climate change, reduce food insecurity, control harmful diseases, and ensure environmental sustainability. However, most publications refer to individual microbiomes, and those integrating two or more related disciplines are rare. This review examines the multifaceted benefits of microbiomes across agriculture, food manufacturing and preservation, the natural environment, human health, and biocatalyst processes. Plant microbiomes, by improving plant nutrient cycling and increasing plant abiotic and biotic stress resilience, have increased crop yields by over 20%. Food microbiomes generate approximately USD 30 billion to the global economy through the fermented food industry alone. Environmental microbiomes help detoxify pollutants, absorb more than 90% of heavy metals, and facilitate carbon sequestration. For human microbiomes, an adult person can carry up to 38 trillion microbes which regulate well being, immune functionality, reproductive function, and disease prevention. Microbiomes are used to optimize biocatalyst processes which produce bioenergy and biochemicals; bioethanol production alone is valued at over USD 83 billion p.a. However, challenges, including knowledge gaps, engaging indigenous communities, technical limitations, regulatory considerations, the need for interdisciplinary collaboration, and ethical issues, must be overcome before the potential for microbiomes can be more effectively realized.
Collapse
Affiliation(s)
- Sereyboth Soth
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, Canterbury, New Zealand
- National Institute of Science, Technology and Innovation, Phnom Penh, Cambodia
| | - John G. Hampton
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, Canterbury, New Zealand
| | - Hossein Alizadeh
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, Canterbury, New Zealand
| | | | - Artemio Mendoza-Mendoza
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, Canterbury, New Zealand
| |
Collapse
|
3
|
Jara‐Servin A, Alcaraz LD, Juarez‐Serrano SI, Espinosa‐Jaime A, Barajas I, Morales L, DeLuna A, Hernández‐López A, Mancera E. Microbial Communities in Agave Fermentations Vary by Local Biogeographic Regions. ENVIRONMENTAL MICROBIOLOGY REPORTS 2025; 17:e70057. [PMID: 39865360 PMCID: PMC11761429 DOI: 10.1111/1758-2229.70057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 11/04/2024] [Accepted: 11/22/2024] [Indexed: 01/28/2025]
Abstract
The production of traditional agave spirits in Mexico, such as mezcal, involves a process that uses environmental microorganisms to ferment the cooked must from agave plants. By analysing these microorganisms, researchers can understand the dynamics of microbial communities at the interface of natural and human-associated environments. This study involved 16S and ITS amplicon sequencing of 99 fermentation tanks from 42 distilleries across Mexico. The Agave species used, production methods, climatic conditions and biogeographic characteristics varied significantly among sites. However, certain taxa were found in most fermentations, indicating a core group of microorganisms common to these communities. The primary variable consistently associated with the composition of both bacterial and fungal communities was the distillery, suggesting that local production practices and site-specific attributes influence the microbiomes. The fermentation stage, climate and producing region also affected community composition but only for prokaryotes. Analysis of multiple tanks within three distilleries showed taxa enriched in specific fermentation stages or agave species. This research provides a detailed analysis of the microbiome of agave fermentations, offering important knowledge for its management and conservation.
Collapse
Affiliation(s)
- Angélica Jara‐Servin
- Laboratorio de Genómica Ambiental, Departamento de Biología Celular, Facultad de CienciasUniversidad Nacional Autónoma de MexicoCiudad de MéxicoMexico
| | - Luis D. Alcaraz
- Laboratorio de Genómica Ambiental, Departamento de Biología Celular, Facultad de CienciasUniversidad Nacional Autónoma de MexicoCiudad de MéxicoMexico
| | - Sabino I. Juarez‐Serrano
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico NacionalUnidad IrapuatoIrapuatoMexico
| | - Aarón Espinosa‐Jaime
- Escuela Nacional de Estudios Superiores Unidad LeónUniversidad Nacional Autónoma de MéxicoLeónMexico
| | - Ivan Barajas
- Escuela Nacional de Estudios Superiores Unidad LeónUniversidad Nacional Autónoma de MéxicoLeónMexico
| | - Lucia Morales
- Laboratorio Internacional de Investigación Sobre el Genoma HumanoUniversidad Nacional Autónoma de MéxicoJuriquillaMexico
| | - Alexander DeLuna
- Unidad de Genómica AvanzadaCentro de Investigación y de Estudios Avanzados del Instituto Politécnico NacionalIrapuatoMexico
| | - Antonio Hernández‐López
- Escuela Nacional de Estudios Superiores Unidad LeónUniversidad Nacional Autónoma de MéxicoLeónMexico
| | - Eugenio Mancera
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico NacionalUnidad IrapuatoIrapuatoMexico
| |
Collapse
|
4
|
Colón‐González M, Aguirre‐Dugua X, Guerrero‐Osornio MG, Avelar‐Rivas JA, DeLuna A, Mancera E, Morales L. Thriving in Adversity: Yeasts in the Agave Fermentation Environment. Yeast 2025; 42:16-30. [PMID: 39967574 PMCID: PMC11891984 DOI: 10.1002/yea.3989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/31/2024] [Accepted: 01/16/2025] [Indexed: 02/20/2025] Open
Abstract
Agave spirits have gained global recognition and hold a central position within the cultural heritage of Mexico. Traditional distilleries, characterized by open fermentations driven by local microbial communities, persist despite the rise of industrial-scale counterparts. In this review, we explore the environmental conditions and production practices that make the must of cooked agave stems a unique habitat for colonizing microorganisms. Additionally, we review selected studies that have characterized yeast species within these communities, with a focus on their metabolic traits and genomic features. Over 50 fungal species, predominantly Saccharomycetales and few Basidiomycetes, along with a similar number of lactic and acetic acid bacteria, have been identified. Despite variations in the chemical composition of the agave substrates and diversity of cultural practices associated with each traditional fermentation process, yeast species such as Saccharomyces cerevisiae, Kluyveromyces marxianus, Torulaspora delbrueckii, and several Pichia species have been consistently isolated across all agave spirit-producing regions. Importantly, cooked agave must is rich in fermentable sugars, yet it also contains inhibitory compounds that influence the proliferation dynamics of the microbial community. We discuss some of the genetic traits that may enable yeasts to flourish in this challenging environment and how human practices may shape microbial diversity by promoting the selection of microbes that are well-adapted to agave fermentation environments. The increasing demand for agave spirits, combined with concerns about the preservation of natural resources and cultural practices associated with their production, underscores the need to deepen our understanding of all key players, including the yeast communities involved.
Collapse
Affiliation(s)
- Maritrini Colón‐González
- Laboratorio Internacional de Investigación sobre el Genoma Humano (LIIGH)Universidad Nacional Autónoma de MéxicoQuerétaroMéxico
- Unidad de Genómica AvanzadaCentro de Investigación y de Estudios Avanzados del Instituto Politécnico NacionalIrapuatoMéxico
| | - Xitlali Aguirre‐Dugua
- Investigadoras e Investigadores por México, Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCYT)Ciudad de MéxicoMéxico
| | - Mariana G. Guerrero‐Osornio
- Laboratorio Internacional de Investigación sobre el Genoma Humano (LIIGH)Universidad Nacional Autónoma de MéxicoQuerétaroMéxico
- Instituto de EcologíaUniversidad Nacional Autónoma de México, Posgrado en Ciencias BiológicasCiudad de MéxicoMéxico
| | - J. Abraham Avelar‐Rivas
- Unidad de Genómica AvanzadaCentro de Investigación y de Estudios Avanzados del Instituto Politécnico NacionalIrapuatoMéxico
| | - Alexander DeLuna
- Unidad de Genómica AvanzadaCentro de Investigación y de Estudios Avanzados del Instituto Politécnico NacionalIrapuatoMéxico
| | - Eugenio Mancera
- Departamento de Ingeniería GenéticaCentro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad IrapuatoIrapuatoMéxico
| | - Lucia Morales
- Laboratorio Internacional de Investigación sobre el Genoma Humano (LIIGH)Universidad Nacional Autónoma de MéxicoQuerétaroMéxico
| |
Collapse
|
5
|
Ojeda-Linares C, Casas A, González-Rivadeneira T, Nabhan GP. The dawn of ethnomicrobiology: an interdisciplinary research field on interactions between humans and microorganisms. JOURNAL OF ETHNOBIOLOGY AND ETHNOMEDICINE 2024; 20:86. [PMID: 39285478 PMCID: PMC11406881 DOI: 10.1186/s13002-024-00725-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/03/2024] [Indexed: 09/19/2024]
Abstract
BACKGROUND Ethnobiologists commonly analyze local knowledge systems related to plants, animals, fungi, and ecosystems. However, microbes (bacteria, yeasts, molds, viruses, and other organisms), often considered invisible in their interactions with humans, are often neglected. Microorganisms were the earliest life forms on Earth, and humans have interacted with them throughout history. Over time, humans have accumulated ecological knowledge about microbes through attributes such as smell, taste, and texture that guide the management of contexts in which microorganisms evolve. These human-microbe interactions are, in fact, expressions of biocultural diversity. Thus, we propose that ethnomicrobiology is a distinct interdisciplinary field within ethnobiology that examines the management practices and knowledge surrounding human-microbe interactions, along with the theoretical contributions that such an approach can offer. METHODS We reviewed scientific journals, books, and chapters exploring human-microbe relationships. Our search included databases such as Web of Science, Scopus, Google Scholar, and specific journal websites, using keywords related to ethnomicrobiology and ethnozymology. To categorize activities involving deliberate human-microbial interactions, we examined topics such as fermentation, pickling, food preservation, silaging, tanning, drying, salting, smoking, traditional medicine, folk medicine, agricultural practices, composting, and other related practices. RESULTS Our research identified important precedents for ethnomicrobiology through practical and theoretical insights into human-microbe interactions, particularly in their impact on health, soil, and food systems. We also found that these interactions contribute to biodiversity conservation and co-evolutionary processes. This emerging interdisciplinary field has implications for food ecology, public health, and the biocultural conservation of hidden microbial landscapes and communities. It is essential to explore the socioecological implications of the interwoven relationships between microbial communities and humans. Equally important is the promotion of the conservation and recovery of this vast biocultural diversity, along with sustainable management practices informed by local ecological knowledge. CONCLUSION Recognizing the dawn of ethnomicrobiology is essential as the field evolves from a descriptive to a more theoretical and integrative biological approach. We emphasize the critical role that traditional communities have played in conserving food, agriculture, and health systems. This emerging field highlights that the future of ethnobiological sciences will focus not on individual organisms or cultures, but on the symbiosis between microorganisms and humans that has shaped invisible but often complex biocultural landscapes.
Collapse
Affiliation(s)
- César Ojeda-Linares
- Jardín Botánico, Instituto de Biología, Universidad Nacional Autónoma de México, Coyoacán, Mexico City, Mexico.
- Estancias Posdoctorales Por México, CONAHCyT, Mexico City, Mexico.
| | - Alejandro Casas
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Genetic Resources Lab, Universidad Nacional Autónoma de México, Campus Morelia, Morelia, Mexico.
| | | | - Gary P Nabhan
- The Southwest Center, Desert Laboratory on Tumamoc Hill, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
6
|
Rebaza-Cardenas T, Montes-Villanueva ND, Fernández M, Delgado S, Ruas-Madiedo P. Microbiological and physical-chemical characteristics of the Peruvian fermented beverage "Chicha de siete semillas": Towards the selection of strains with acidifying properties. Int J Food Microbiol 2023; 406:110353. [PMID: 37591132 DOI: 10.1016/j.ijfoodmicro.2023.110353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 06/29/2023] [Accepted: 08/05/2023] [Indexed: 08/19/2023]
Abstract
Traditional fermented beverages have been consumed worldwide for centuries. Such is the case of "Chicha de siete semillas" which is originally from the province of Huanta, in Ayacucho, Peru. In this work we have analyzed the chemical composition and bacterial diversity of products manufactured from six producers, who have used different combinations of cereals, pseudocereals, legumes and aromatic herbs, although maize was present in all of them. The fermented beverages had a low pH, mainly due to the production of lactic acid, whereas ethanol was, in general, present in low concentrations. Most of the products were rich in GABA, the content of biogenic amines being very low, as corresponds to a product with a short maturation time (less than 4 days). A metataxonomic analysis revealed that Streptococcaceae and Leuconostocaceae families were dominant in the majority of the beverages, Streptococcus spp. and Leuconostoc spp. being the representative genera, respectively. The result was corroborated by culture-dependent techniques, since these were the most abundant genera isolated and identified in all samples, with Streptococcus macedonicus and Leuconostoc lactis as representative species. In lower proportions other isolates were identified as Lactobacillus delbrueckii, Lactiplantibacillus plantarum, Furfurilactobacillus rossiae, Weissella confusa and Enterococcus faecium. The genetic profile of 26 S. macedonicus isolates was determined by RAPD-PCR and REP-PCR, showing five different patterns distinguishable with the first technique. One representative strain from each genetic pattern was further characterized and used to ferment a maize-based matrix (with saccharose) in order to know their technological potential. All strains were able to ferment the beverage at 30 °C in a short time (about 6 h) reaching a pH below 4.5 and they remained viable after 24 h; the main organic acid contributing to the pH decrease was lactic acid. Therefore, S. macedonicus is a good candidate for being part of a putative starter culture, since it is a species well adapted to this cereal-based food niche.
Collapse
Affiliation(s)
- Teresa Rebaza-Cardenas
- Instituto de Productos Lácteos de Asturias (IPLA), CSIC, Paseo Río Linares s/n, 33300 Villaviciosa, Asturias, Spain; Facultad de Ingeniería Agraria, Universidad Católica Sedes Sapientiae (UCSS), Lima, Peru
| | | | - María Fernández
- Instituto de Productos Lácteos de Asturias (IPLA), CSIC, Paseo Río Linares s/n, 33300 Villaviciosa, Asturias, Spain
| | - Susana Delgado
- Instituto de Productos Lácteos de Asturias (IPLA), CSIC, Paseo Río Linares s/n, 33300 Villaviciosa, Asturias, Spain
| | - Patricia Ruas-Madiedo
- Instituto de Productos Lácteos de Asturias (IPLA), CSIC, Paseo Río Linares s/n, 33300 Villaviciosa, Asturias, Spain.
| |
Collapse
|
7
|
Ojeda-Linares CI, Vallejo M, Casas A. Disappearance and survival of fermented beverages in the biosphere reserve Tehuacán-Cuicatlán, Mexico: The cases of Tolonche and Lapo. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2023. [DOI: 10.3389/fsufs.2022.1067598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Traditional fermented products are disappearing from the local foodscapes due to social pressures and ecological changes that affect their production; it is therefore crucial to document local knowledge, which is crucial to maintain and recover local biocultural heritage and to contribute to food security. This study aims to document and foster the production of local traditional beverages by registering recipes of fermented beverages in the Tehuacán-Cuicatlán biosphere reserve in central Mexico, a region recognized for its great biocultural diversity. We conducted a search of peer-reviewed literature. Additionally, we included ethnographic research and participatory methods to engage residents in different steps of the production process. We identified five main fermented beverages in the research area, the most common beverages are those produced by agave species which include, mescal, pulque and an almost extinct beverage known as lapo which involves sugar cane as main substrate. We also identified a fermented beverage produced with several cacti fruits known as nochoctli and a traditional a fermented beverage produced with fruits of Schinus molle known as tolonche. We highlight the production of lapo and tolonche since these involved the incorporation of foreign substrates into the region after the Spaniard conquest and to their restricted distribution and almost extinction. The beverages tolonche and lapo are nowadays almost lost and only a few producers still prepare them to follow modified versions of the original recipe. Lapo and tolonche were once important in the research area but almost became extinct until local people started to recently recover them. Traditional fermented beverages in Mexico play an important role in cultural identity and contribute to the local diet; nevertheless, several fermented beverages have not been recorded and have even become extinct. This work is an effort to promote and conserve traditional fermented beverages as valuable biocultural heritage by empowering people to make decisions about the use of locally available resources, which is crucial in times when food systems are highly vulnerable.
Collapse
|
8
|
Qin H, Wu H, Shen K, Liu Y, Li M, Wang H, Qiao Z, Mu Z. Fermented Minor Grain Foods: Classification, Functional Components, and Probiotic Potential. Foods 2022; 11:3155. [PMID: 37430904 PMCID: PMC9601907 DOI: 10.3390/foods11203155] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/01/2022] [Accepted: 10/04/2022] [Indexed: 08/05/2023] Open
Abstract
Fermented minor grain (MG) foods often have unique nutritional value and functional characteristics, which are important for developing dietary culture worldwide. As a kind of special raw material in fermented food, minor grains have special functional components, such as trace elements, dietary fiber, and polyphenols. Fermented MG foods have excellent nutrients, phytochemicals, and bioactive compounds and are consumed as a rich source of probiotic microbes. Thus, the purpose of this review is to introduce the latest progress in research related to the fermentation products of MGs. Specific discussion is focused on the classification of fermented MG foods and their nutritional and health implications, including studies of microbial diversity, functional components, and probiotic potential. Furthermore, this review discusses how mixed fermentation of grain mixtures is a better method for developing new functional foods to increase the nutritional value of meals based on cereals and legumes in terms of dietary protein and micronutrients.
Collapse
Affiliation(s)
- Huibin Qin
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau, Ministry of Agriculture, Shanxi Key Laboratory of Genetic Resources and Genetic Improvement of Minor Crops, Taiyuan 030031, China
| | - Houbin Wu
- Shennong Technology Group Co., Ltd., Jinzhong 030801, China
| | - Ke Shen
- Shennong Technology Group Co., Ltd., Jinzhong 030801, China
| | - Yilin Liu
- Shennong Technology Group Co., Ltd., Jinzhong 030801, China
| | - Meng Li
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau, Ministry of Agriculture, Shanxi Key Laboratory of Genetic Resources and Genetic Improvement of Minor Crops, Taiyuan 030031, China
| | - Haigang Wang
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau, Ministry of Agriculture, Shanxi Key Laboratory of Genetic Resources and Genetic Improvement of Minor Crops, Taiyuan 030031, China
| | - Zhijun Qiao
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau, Ministry of Agriculture, Shanxi Key Laboratory of Genetic Resources and Genetic Improvement of Minor Crops, Taiyuan 030031, China
| | - Zhixin Mu
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau, Ministry of Agriculture, Shanxi Key Laboratory of Genetic Resources and Genetic Improvement of Minor Crops, Taiyuan 030031, China
| |
Collapse
|
9
|
Nabhan GP, Colunga-GarcíaMarín P, Zizumbo-Villarreal D. Comparing Wild and Cultivated Food Plant Richness Between the Arid American and the Mesoamerican Centers of Diversity, as Means to Advance Indigenous Food Sovereignty in the Face of Climate Change. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.840619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Climate change is aggravating agricultural crop failures, and the paucity of wild food harvests for Indigenous desert dwellers in Mexico and the U.S. This food production crisis challenges ongoing efforts by Indigenous communities in obtaining greater food security, prompting them to reconsider the value of traditional Indigenous food systems in both Mesoamerica and Arid America, two adjacent centers of crop diversity. While food production strategies in these two centers share many features, the food plant diversity in the Western Mesoamerican region appears to be greater. However, a higher percentage of plants in Arid America have adapted to water scarcity, heat, and damaging radiation. The phytochemical and physiological adaptations of the food plants to abiotic stresses in arid environments offer a modicum of resilience in the face of aggravated climate uncertainties. By comparing food plant genera comprising Western Mesoamerican and Arid American diets, we detected a higher ratio of CAM succulents in the wild and domesticated food plant species in the Arid American food system. We conclude that food plant diversity in the ancestral diets of both centers can provide much of the resilience needed to advance Indigenous food sovereignty and assure food security as climate change advances.
Collapse
|
10
|
How to Frame Destination Foodscapes? A Perspective of Mixed Food Experience. Foods 2022; 11:foods11121706. [PMID: 35741903 PMCID: PMC9222725 DOI: 10.3390/foods11121706] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 12/12/2022] Open
Abstract
Foodscape conceptualizes the dynamic human–food–place nexus. Tourism provides a cross-cultural context where tourists can consume different destination foods and places, during which multiple types of destination foodscapes are produced. However, few studies explore how to frame the types and connotations of destination foodscape. Tourists’ travelogues provide a rich database to examine this question. Through netnography, this study collects and analyzes 86 posts of travelogues published from 2012 to 2019 in Mafengwo, a famous Chinese online travel community, about Chinese tourists’ food experiences in Chiang Mai, Thailand. We summarize five types of destination foodscapes, globalized recreational foodscape, staged local foodscape, glocalized foodscape, authentic local foodscape, and overseas ethnic foodscape in which tourists obtain different familiar-novelty hybrid experiences. This study contributes to interdisciplinary dialogue between food and tourism literature by proposing a coordinate framework with two axes, the spectrum of cultural distance and the spectrum of serving tourists/locals, to classify destination foodscape and a six-dimensional network construct to reveal the connotations of destination foodscape. Relevant strategies for promoting destination food and tourism development are also provided.
Collapse
|
11
|
Unveiling the Bioactive Potential of Fresh Fruit and Vegetable Waste in Human Health from a Consumer Perspective. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12052747] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Food supply disruption and shortage verified during the current pandemic events are a scenario that many anticipate for the near future. The impact of climate changes on food production, the continuous decrease in arable land, and the exponential growth of the human population are important drivers for this problem. In this context, adding value to food waste is an obvious strategy to mitigate food shortages, but there is a long way to go in this field. Globally, it is estimated that one-third of all food produced is lost. This is certainly due to many different factors, but the lack of awareness of the consumer about the nutritional value of certain foods parts, namely peels and seeds, is certainly among them. In this review, we will unveil the nutritional and bioactive value of the waste discarded from the most important fresh fruit and vegetables consumed worldwide as a strategy to decrease food waste. This will span the characterization of the bioactive composition of selected waste from fruits and vegetables, particularly their seeds and peels, and their possible uses, whether in our diet or recycled to other ends.
Collapse
|
12
|
Ojeda-Linares CI, Solís-García IA, Casas A. Constructing Micro-Landscapes: Management and Selection Practices on Microbial Communities in a Traditional Fermented Beverage. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.821268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Colonche is a traditional beverage produced in Mexico by the fermentation of fruits of several cacti species. In the Meridional Central Plateau region of Mexico, where this study was conducted, it is mainly produced with fruits of Opuntia streptacantha; there, the producers perform spontaneous fermentation and/or fermentations through inoculums. Several factors can change the microbial community structure and dynamics through the fermentation process, but little attention has been directed to evaluate what type and extent of change the human practices have over the microbial communities. This study aims to assess the microbiota under spontaneous and inoculated fermentation techniques, the microorganisms present in the inoculums and containers, and the changes of microbiota during the process of producing colonche with different techniques. We used next-generation sequencing of the V3-V4 regions of the 16S rRNA gene and the ITS2, to characterize bacterial and fungal diversity associated with the different fermentation techniques. We identified 701 bacterial and 203 fungal amplicon sequence variants (ASVs) belonging to 173 bacterial and 187 fungal genera. The alpha and beta diversity analysis confirmed that both types of fermentation practices displayed differences in richness, diversity, and community structure. Richness of bacteria in spontaneous fermentation (0D = 136 ± 0.433) was higher than in the inoculated samples (0D = 128 ± 0.929), while fungal richness in the inoculated samples (0D = 32 ± 0.539) was higher than in spontaneous samples (0D = 19 ± 0.917). We identified bacterial groups like Lactobacillus, Leuconostoc, Pediococcus and the Saccharomyces yeast shared in ferments managed with different practices; these organisms are commonly related to the quality of the fermentation process. We identified that clay pots, where spontaneous fermentation is carried out, have an outstanding diversity of fungal and bacterial richness involved in fermentation, being valuable reservoirs of microorganisms for future fermentations. The inoculums displayed the lowest richness and diversity of bacterial and fungal communities suggesting unconscious selection on specific microbial consortia. The beta diversity analysis identified an overlap in microbial communities for both types of fermentation practices, which might reflect a shared composition of microorganisms occurring in the Opuntia streptacantha substrate. The variation in the spontaneous bacterial community is consistent with alpha diversity data, while fungal communities showed less differences among treatments, probably due to the high abundance and dominance of Saccharomyces. This information illustrates how traditional management guides selection and may drive changes in the microbial consortia to produce unique fermented beverages through specific fermentation practices. Although further studies are needed to analyze more specifically the advantages of each fermentation type over the quality of the product, our current analysis supports the role of traditional knowledge driving it and the relevance of plans for its conservation.
Collapse
|
13
|
Lindner JDD, Bernini V. New Insights into Food Fermentation. Foods 2022; 11:foods11030283. [PMID: 35159435 PMCID: PMC8834541 DOI: 10.3390/foods11030283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 01/17/2022] [Indexed: 02/01/2023] Open
Abstract
Food fermentation has been used for thousands of years for food preservation [...]
Collapse
Affiliation(s)
- Juliano De Dea Lindner
- Food Technology and Bioprocess Research Group, Department of Food Science and Technology, Federal University of Santa Catarina (UFSC), Florianópolis 88034-000, Brazil
- Correspondence: (J.D.D.L.); (V.B.)
| | - Valentina Bernini
- Department of Food and Drug, University of Parma (UNIPR), 43124 Parma, Italy
- Correspondence: (J.D.D.L.); (V.B.)
| |
Collapse
|
14
|
Anju T, Rai NKSR, Kumar A. Sauropus androgynus (L.) Merr.: a multipurpose plant with multiple uses in traditional ethnic culinary and ethnomedicinal preparations. JOURNAL OF ETHNIC FOODS 2022; 9:10. [PMCID: PMC8900104 DOI: 10.1186/s42779-022-00125-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Various plants form the basis of multiple traditional ethnic cuisines and ethnomedicinal practices across the globe. The ethnic cuisines cater to the nutritional, dietary and medicinal requirements of the tribal and rural communities even today. Using literature from various scholarly databases, this study was conducted to consolidate a comprehensive review on the use of Sauropus androgynus (L.) Merr. in various traditional ethnic cuisines and ethnomedicinal preparations across the globe. The survey shows that it is used in multiple ethnic cuisines and is variously known in different countries and among the communities. Further, it possesses multiple nutritional and ethnomedicinal properties. Considering its importance in ethnic foods and ethnomedicinal preparations, it is important to investigate the nutritional composition, phytochemical constitution and pharmacological basis of ethnomedicinal uses. Therefore, we further compiled this information and found that it is a rich source of both micro- and macronutrients and packed with several bioactive compounds. Survey of pharmacological studies on its traditional medicinal uses supports its ethnomedicinal properties. Despite its importance in traditional food and ethnomedicinal systems, it remains underexplored. Limited information on the toxicity of its various extracts shows that further studies should be conducted to understand its safety aspects. Further clinical studies to prospect possible drug candidates from it should be attempted.
Collapse
Affiliation(s)
- Thattantavide Anju
- Department of Plant Science, School of Biological Sciences, Central University of Kerala, Periye, Kasaragod, Kerala 671316 India
| | - Nishmitha Kumari S. R. Rai
- Department of Plant Science, School of Biological Sciences, Central University of Kerala, Periye, Kasaragod, Kerala 671316 India
| | - Ajay Kumar
- Department of Plant Science, School of Biological Sciences, Central University of Kerala, Periye, Kasaragod, Kerala 671316 India
| |
Collapse
|