1
|
Jeevarathinam G, Ramniwas S, Singh P, Rustagi S, Mohammed Basheeruddin Asdaq S, Pandiselvam R. Macromolecular, thermal, and nonthermal technologies for reduction of glycemic index in food-A review. Food Chem 2024; 445:138742. [PMID: 38364499 DOI: 10.1016/j.foodchem.2024.138742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/07/2024] [Accepted: 02/10/2024] [Indexed: 02/18/2024]
Abstract
Consumers rely on product labels to make healthy choices, especially with regard to the glycemic index (GI) and glycemic load (GL), which identify foods that stabilize blood sugar. Employing both thermal and nonthermal processing techniques can potentially reduce the GI, contributing to improved blood sugar regulation and overall metabolic health. This study concentrates on the most current advances in GI-reduction food processing technologies. Food structure combines fiber, healthy fats, and proteins to slow digestion, reducing GI. The influence of thermal approaches on the physical and chemical modification of starch led to decreased GI. The duration of heating and the availability of moisture also determine the degree of hydrolysis of starch and the glycemic effects on food. At a lower temperature, the parboiling revealed less gelatinization and increased moisture. The internal temperature of the product is raised during thermal and nonthermal treatment, speeds up retrogradation, and reduces the rate of starch breakdown.
Collapse
Affiliation(s)
- G Jeevarathinam
- Department of Food Technology, Hindusthan College of Engineering and Technology, Coimbatore 641 032, Tamil Nadu, India
| | - Seema Ramniwas
- University Centre for Research and Development, University of Biotechnology, Chandigarh University, Gharuan, Mohali, Punjab
| | - Punit Singh
- Institute of Engineering and Technology, Department of Mechanical Engineering, GLA University Mathura, Uttar Pradesh 281406, India
| | - Sarvesh Rustagi
- School of Applied and Life Sciences, Uttaranchal University, Dehradun, Uttarakhand, India
| | | | - R Pandiselvam
- Physiology, Biochemistry and Post-Harvest Technology Division, ICAR -Central Plantation Crops Research Institute, Kasaragod-671 124, Kerala, India.
| |
Collapse
|
2
|
Guo W, Mehrparvar S, Hou W, Pan J, Aghbashlo M, Tabatabaei M, Rajaei A. Unveiling the impact of high-pressure processing on anthocyanin-protein/polysaccharide interactions: A comprehensive review. Int J Biol Macromol 2024; 270:132042. [PMID: 38710248 DOI: 10.1016/j.ijbiomac.2024.132042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/08/2024]
Abstract
Anthocyanins, natural plant pigments responsible for the vibrant hues in fruits, vegetables, and flowers, boast antioxidant properties with potential human health benefits. However, their susceptibility to degradation under conditions such as heat, light, and pH fluctuations necessitates strategies to safeguard their stability. Recent investigations have focused on exploring the interactions between anthocyanins and biomacromolecules, specifically proteins and polysaccharides, with the aim of enhancing their resilience. Notably, proteins like soy protein isolate and whey protein, alongside polysaccharides such as pectin, starch, and chitosan, have exhibited promising affinities with anthocyanins, thereby enhancing their stability and functional attributes. High-pressure processing (HPP), emerging as a non-thermal technology, has garnered attention for its potential to modulate these interactions. The application of high pressure can impact the structural features and stability of anthocyanin-protein/polysaccharide complexes, thereby altering their functionalities. However, caution must be exercised, as excessively high pressures may yield adverse effects. Consequently, while HPP holds promise in upholding anthocyanin stability, further exploration is warranted to elucidate its efficacy across diverse anthocyanin variants, macromolecular partners, pressure regimes, and their effects within real food matrices.
Collapse
Affiliation(s)
- Wenjuan Guo
- School of Pharmaceutical Sciences, Tiangong University, Tianjin 300087, China
| | - Sheida Mehrparvar
- Department of Food Science and Technology, Faculty of Agriculture, Shahrood University of Technology, Shahrood, Iran
| | - Weizhao Hou
- School of Chemical Engineering and Technology, Tiangong University, Tianjin 300087, China
| | - Junting Pan
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Mortaza Aghbashlo
- Department of Mechanical Engineering of Agricultural Machinery, Faculty of Agricultural Engineering and Technology, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.
| | - Meisam Tabatabaei
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia.
| | - Ahmad Rajaei
- Department of Food Science and Technology, Faculty of Agriculture, Shahrood University of Technology, Shahrood, Iran.
| |
Collapse
|
3
|
Katsouli M, Dermesonlouoglou E, Dimopoulos G, Karafantalou E, Giannakourou M, Taoukis P. Shelf-Life Enhancement Applying Pulsed Electric Field and High-Pressure Treatments Prior to Osmotic Dehydration of Fresh-Cut Potatoes. Foods 2024; 13:171. [PMID: 38201199 PMCID: PMC10779092 DOI: 10.3390/foods13010171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
From a quality standpoint, it is desirable to preserve the characteristics of fresh-cut potatoes at their peak. However, due to the mechanical tissue damage during the cutting process, potatoes are susceptible to enzymatic browning. This study pertains to the selection of the appropriate osmotic dehydration (OD), high pressure (HP), and pulsed electric fields (PEF) processing conditions leading to effective quality retention of potato cuts. PEF (0.5 kV/cm, 200 pulses) or HP (400 MPa, 1 min) treatments prior to OD (35 °C, 120 min) were found to promote the retention of the overall quality (texture and color) of the samples. The incorporation of anti-browning agents (ascorbic acid and papain) into the osmotic solution improved the color retention, especially when combined with PEF or HP due to increased solid uptake (during OD) as indicated by DEI index (2.30, 1.93, and 2.10 for OD treated 120 min, non-pre-treated, HP pre-treated, and PEF pre-treated samples, respectively). PEF and HP combined with OD and anti-browning agent enrichment are sought to improve the quality and microbial stability of fresh-cut potatoes during refrigerator storage. Untreated fresh-cut potatoes were characterized by color degradation from the 2nd day of storage at 4 °C, and presented microbial growth (total viable counts: 6 log (CFU)/g) at day 6, whereas pre-treated potato samples retained their color and microbiologically stability after 6 days of cold storage (total viable counts, <4 log(CFU)/g).
Collapse
Affiliation(s)
| | - Efimia Dermesonlouoglou
- Laboratory of Food Chemistry and Technology, School of Chemical Engineering, National Technical University of Athens (NTUA), 9, Iroon Polytechniou Str, 15772 Zografou, Greece; (M.K.); (G.D.); (E.K.); (M.G.); (P.T.)
| | | | | | | | | |
Collapse
|
4
|
Cano-Lamadrid M, Artés-Hernández F. Thermal and Non-Thermal Treatments to Preserve and Encourage Bioactive Compounds in Fruit- and Vegetable-Based Products. Foods 2022; 11:3400. [PMID: 36360013 PMCID: PMC9656200 DOI: 10.3390/foods11213400] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/22/2022] [Accepted: 10/25/2022] [Indexed: 10/15/2023] Open
Abstract
Fruit- and vegetable-based products (F&Vs) have been conventionally processed using thermal techniques such as pasteurization, scalding, or/and drying, ensuring microbial safety and/or enzyme deactivation [...].
Collapse
Affiliation(s)
| | - Francisco Artés-Hernández
- Postharvest and Refrigeration Group, Department of Agronomical Engineering, Institute of Plant Biotechnology, Universidad Politécnica de Cartagena, 30203 Cartagena, Murcia, Spain
| |
Collapse
|
5
|
Yang M, Tao L, Zhao CC, Wang ZL, Yu ZJ, Zhou W, Wen YL, Li LF, Tian Y, Sheng J. Antifatigue Effect of Panax Notoginseng Leaves Fermented With Microorganisms: In-vitro and In-vivo Evaluation. Front Nutr 2022; 9:824525. [PMID: 35273989 PMCID: PMC8904179 DOI: 10.3389/fnut.2022.824525] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/25/2022] [Indexed: 11/15/2022] Open
Abstract
Fatigue is a common physiological phenomenon caused by many complicated factors. Excessive fatigue will lead to a series of uncomfortable reactions and damage body health. Panax notoginseng leaves (PNL) is a new resource food that good for soothing nerves, nourishing the heart, and strengthening the spleen. Microbial fermentation could increase the content of bio-ingredients and produce new active ingredients. However, the effect of fermented P. notoginseng leaves (FPNL) on antifatigue and the molecular mechanisms remain to be elucidated. Thus, in this study, we evaluated the antifatigue effect of co-fermented P. notoginseng leaves by Saccharomyces cerevisiae and Bacillus subtilis in-vitro and in-vivo, and its mechanism was further elucidated. The results showed that FPNL exhibited higher saponins, organic phenolic acids content, and antioxidant activity than PNL. FPNL improved ISO-induced H9c2 myocardial cell damage by alleviating apoptosis (modulating Bax and Bcl-2 protein expression) and reducing antioxidant activity in-vitro. Moreover, in-vivo experiment showed that FPNL significantly prolonged the weight-loading swimming time of mice. After gavaged FPNL, the levels of liver glycogen (LG) and serum lactate dehydrogenase (LDH) activity were increased in mice. In contrast, the levels of blood urea nitrogen (BUN), lactate acid, and malondialdehyde (MDA) were decreased. In summary, our results indicated that FPNL showed a good antifatigue effect in-vivo and in-vitro.
Collapse
Affiliation(s)
- Min Yang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Liang Tao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming, China
- National Research and Development Professional Center for Moringa Processing Technology, Yunnan Agricultural University, Kunming, China
| | - Cun-Chao Zhao
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming, China
- National Research and Development Professional Center for Moringa Processing Technology, Yunnan Agricultural University, Kunming, China
| | - Zi-Lin Wang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Zhi-Jin Yu
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
- National Research and Development Professional Center for Moringa Processing Technology, Yunnan Agricultural University, Kunming, China
| | - Wen Zhou
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Yan-Long Wen
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Ling-Fei Li
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming, China
- *Correspondence: Ling-Fei Li
| | - Yang Tian
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming, China
- National Research and Development Professional Center for Moringa Processing Technology, Yunnan Agricultural University, Kunming, China
- Yang Tian
| | - Jun Sheng
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Pu-erh Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China
- Jun Sheng
| |
Collapse
|