1
|
Gan L, Mou Z, Chen J, Shan W, Kuang J, Lu W, Zhao Y, Wei W. L-Cysteine Treatment Delays Leaf Senescence in Chinese Flowering Cabbage by Regulating ROS Metabolism and Stimulating Endogenous H 2S Production. Foods 2024; 14:29. [PMID: 39796319 PMCID: PMC11719892 DOI: 10.3390/foods14010029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 12/12/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
Leaf senescence is a major concern for postharvest leafy vegetables, as leaves are highly prone to yellowing and nutrient loss, resulting in reduced commercial value and limited shelf-life. This study aimed to investigate the effect of L-cysteine (L-cys) on postharvest Chinese flowering cabbage stored at 20 °C. The results showed that 0.5 g L-1 L-cys treatment effectively slowed leaf senescence by downregulating chlorophyll degradation genes (BrNYC1, BrNOL, BrPPH, BrPAO, BrNYE, and BrSAGs) and senescence marker gene BrSAG12. Moreover, this treatment exhibited positive influence on the nutritional quality of cabbage. Also, L-cys treatment maintained ROS homeostasis, preventing excessive ROS accumulation and lipid membrane oxidation. L-cys treatment also maintained a higher total antioxidant capacity and scavenging rate of •OH and O2•-. Additionally, L-cys treatment maintained high levels of ascorbate and glutathione and activated antioxidant enzymes (superoxide dismutase, peroxidase, and catalase) and the expression of the encoding genes. Furthermore, L-cys treatment elevated endogenous H2S levels, which are correlated with increased L-cysteine desulfhydrase activity and the upregulation of H2S biosynthesis-related genes. These findings suggest that L-cys can delay leaf senescence by reducing chlorophyll breakdown, maintaining ROS homeostasis, and stimulating endogenous H2S production.
Collapse
Affiliation(s)
- Linzhi Gan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (L.G.); (Z.M.); (J.C.); (W.S.); (J.K.); (W.L.)
| | - Zhenliang Mou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (L.G.); (Z.M.); (J.C.); (W.S.); (J.K.); (W.L.)
| | - Jianye Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (L.G.); (Z.M.); (J.C.); (W.S.); (J.K.); (W.L.)
| | - Wei Shan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (L.G.); (Z.M.); (J.C.); (W.S.); (J.K.); (W.L.)
| | - Jianfei Kuang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (L.G.); (Z.M.); (J.C.); (W.S.); (J.K.); (W.L.)
| | - Wangjin Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (L.G.); (Z.M.); (J.C.); (W.S.); (J.K.); (W.L.)
| | - Yating Zhao
- College of Food Science and Pharmacy, Xinjiang Agricultural University, Urumqi 830052, China;
| | - Wei Wei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (L.G.); (Z.M.); (J.C.); (W.S.); (J.K.); (W.L.)
| |
Collapse
|
2
|
Che Y, Ding Z, Shen C, Fernie AR, Tang X, Yao Y, Liu J, Wang Y, Li R, Guo J. Physiological and Microstructure Analysis Reveals the Mechanism by Which Formic Acid Delays Postharvest Physiological Deterioration of Cassava. Antioxidants (Basel) 2024; 13:1245. [PMID: 39456497 PMCID: PMC11504381 DOI: 10.3390/antiox13101245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/09/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
Formic acid is reported to act as a food preservative and feed additive, but its effects on controlling postharvest physiological deterioration (PPD) development in cassava are unclear. In this study, we assessed the effectiveness of different concentrations of formic acid in attenuating PPD occurrence in fresh-cut cassava. The results showed that the concentration of 0.1% (v/v) formic acid could significantly delay the occurrence of PPD, and that the higher the concentration of formic acid supplied, the later the occurrence of PPD symptoms. The physiological and biochemical analysis of 0.5%-formic-acid-treated cassava slices revealed that formic acid decreased the degradation of starch, inhibited the accumulation of hydrogen peroxide (H2O2), malondialdehyde (MDA), and water-soluble pectin in cassava slices with PPD development, and increased the activities of the antioxidant enzymes ascorbate peroxidase (APX) and glutathione reductase (GR). A microscopic observation showed that the formic acid treatment inhibited the enlargement of the intercellular space during the cassava PPD process, which suggests that the formation of an intercellular layer of the cell wall was inhibited by formic acid. This study thus revealed the mechanism used by formic acid to extend the cassava shelf life; however, a detailed evaluation of the possible side effects on, for example, the cyanide content will be needed to categorically ensure the safety of this method.
Collapse
Affiliation(s)
- Yannian Che
- School of Life Sciences, Hainan University, Haikou 570228, China; (Y.C.); (Z.D.); (X.T.)
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (C.S.); (Y.Y.); (J.L.); (Y.W.)
- Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya 572024, China
| | - Zhongping Ding
- School of Life Sciences, Hainan University, Haikou 570228, China; (Y.C.); (Z.D.); (X.T.)
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (C.S.); (Y.Y.); (J.L.); (Y.W.)
- Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya 572024, China
| | - Chen Shen
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (C.S.); (Y.Y.); (J.L.); (Y.W.)
- Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya 572024, China
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Alisdair R. Fernie
- Root Biology and Symbiosis, Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany;
| | - Xiangning Tang
- School of Life Sciences, Hainan University, Haikou 570228, China; (Y.C.); (Z.D.); (X.T.)
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (C.S.); (Y.Y.); (J.L.); (Y.W.)
- Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya 572024, China
| | - Yuan Yao
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (C.S.); (Y.Y.); (J.L.); (Y.W.)
- Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya 572024, China
| | - Jiao Liu
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (C.S.); (Y.Y.); (J.L.); (Y.W.)
- Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya 572024, China
| | - Yajie Wang
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (C.S.); (Y.Y.); (J.L.); (Y.W.)
- Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya 572024, China
| | - Ruimei Li
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (C.S.); (Y.Y.); (J.L.); (Y.W.)
- Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya 572024, China
| | - Jianchun Guo
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (C.S.); (Y.Y.); (J.L.); (Y.W.)
| |
Collapse
|
3
|
Ding R, Dai X, Zhang Z, Bi Y, Prusky D. Composite Coating of Oleaster Gum Containing Cuminal Keeps Postharvest Quality of Cherry Tomatoes by Reducing Respiration and Potentiating Antioxidant System. Foods 2024; 13:1542. [PMID: 38790842 PMCID: PMC11120580 DOI: 10.3390/foods13101542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/09/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Exploring the green and affordable protection of perishable cherry tomato fruits during storage, herein, the protective efficacy, and its underpinning mechanisms, of a coating of oleaster gum, alone or incorporated with cuminal, on cherry tomatoes stored at ambient temperature was investigated. The composite coating of oleaster gum with 0.1% cuminal reduced the decay, respiration rate, weight loss, and softening of the fruits and decelerated the decreases in their total soluble solid, titratable acidity, and soluble protein levels, and therefore maintained their marketability. Furthermore, it reduced the accumulation of O2·- and H2O2 in the fruits and mitigated cell membrane lipid oxidation and permeabilization, thereby retarding their senescence. Instrumentally, it elevated the activities of superoxide dismutase, catalase, peroxidase, and ascorbate peroxidase and the levels of ascorbic acid and glutathione. This potentiation of the fruits' antioxidant system makes this composite coating a promising approach to keeping the postharvest quality of perishable fruits.
Collapse
Affiliation(s)
- Ruojun Ding
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China; (R.D.); (X.D.); (Y.B.); (D.P.)
| | - Xishuang Dai
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China; (R.D.); (X.D.); (Y.B.); (D.P.)
| | - Zhong Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China; (R.D.); (X.D.); (Y.B.); (D.P.)
| | - Yang Bi
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China; (R.D.); (X.D.); (Y.B.); (D.P.)
| | - Dov Prusky
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China; (R.D.); (X.D.); (Y.B.); (D.P.)
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, The 12 Volcani Center, Beit Dagan 50200, Israel
| |
Collapse
|
4
|
Wang X, Chen J, Luo D, Ba L. Advances in the Understanding of Postharvest Physiological Changes and the Storage and Preservation of Pitaya. Foods 2024; 13:1307. [PMID: 38731681 PMCID: PMC11083964 DOI: 10.3390/foods13091307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
Highly prized for its unique taste and appearance, pitaya is a tasty, low-calorie fruit. It has a high-water content, a high metabolism, and a high susceptibility to pathogens, resulting in an irreversible process of tissue degeneration or quality degradation and eventual loss of commercial value, leading to economic loss. High quality fruits are a key guarantee for the healthy development of economic advantages. However, the understanding of postharvest conservation technology and the regulation of maturation, and senescence of pitaya are lacking. To better understand the means of postharvest storage of pitaya, extend the shelf life of pitaya fruit and prospect the postharvest storage technology, this paper analyzes and compares the postharvest quality changes of pitaya fruit, preservation technology, and senescence regulation mechanisms. This study provides research directions for the development of postharvest storage and preservation technology.
Collapse
Affiliation(s)
- Xiaogang Wang
- College of Food Science and Engineering, Guiyang University, Guiyang 550005, China;
| | - Jianye Chen
- College of Horticultural Science, South China Agricultural University, Guangzhou 510642, China;
| | - Donglan Luo
- School of Biological and Environmental Engineering, Guiyang University, Guiyang 550005, China;
| | - Liangjie Ba
- College of Food Science and Engineering, Guiyang University, Guiyang 550005, China;
| |
Collapse
|
5
|
Wang H, Li Y, Wassie M, Huo L, Shi H. Salicylic Acid Spray Delays Sand Pear Fruit Senescence during Room Temperature Shelf Life by Regulating Antioxidant Capacity and Senescence-Related Genes. PLANTS (BASEL, SWITZERLAND) 2024; 13:848. [PMID: 38592916 PMCID: PMC10975672 DOI: 10.3390/plants13060848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/12/2024] [Accepted: 03/13/2024] [Indexed: 04/11/2024]
Abstract
'Whangkeumbae' (Pyrus pyrifolia) is a variety of sand pear fruit well-known for its smooth surface and good taste. However, the fruit quality is adversely affected by postharvest ethylene production. Therefore, improving postharvest shelf life by regulating fruit senescence is critical to promoting the 'Whangkeumbae' fruit industry. Here, we investigated the effect of salicylic acid (SA) spray on fruit senescence in sand pears during room temperature shelf life. Exogenous SA reduced polyphenol oxidase (PPO) activity and malondialdehyde (MDA) content during room temperature shelf life. Additionally, SA effectively maintained the fruit skin coloration and increased the activity of antioxidant enzymes, such as superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX). SA treatment inhibited PpPPO1 expression and upregulated PpSOD1, PpAPX6, and PpGST2 expression. Furthermore, SA application downregulated the expression of PpACO2, PpEIN3a, PpNCED1, and PpAOC2, while upregulating PpNPR-1, PpTAR2, and PpCOMT1 during room temperature shelf life. SA treatment also influenced cell wall metabolism and modification genes by inhibiting PpPG1, PpPME2, and PpCEL3 and inducing PpPGIP1 expression. Additionally, SA treatment affected sugar and acid metabolism genes and increased the expression of PpSPS1, PpSUS1, PpSOT1, PpTMT4, PpSWEET15, and PpcyNAD-MDH, but suppressed the expression of PpcyNADP-ME. The Pearson correlation analysis indicated that PPO activity and MDA content were positively correlated with the expression of PpPPO1, PpACO2, PpEIN3a, PpNCED1, PpAOC2, PpPG1, PpPME2, PpCEL3, and PpcyNDA-MDH. Conversely, these factors were negatively associated with the activities of SOD, POD, CAT, and APX, as well as the expression levels of PpSOD1, PpPOD1, PpCAT1, PpAPX6, PpGST2, PpNPR-1, PpTAR2, PpCOMT1, PpPGIP1, PpSPS1, PpSUS1, PpSOT1, PpTMT4, PpSWEET15, and PpcyNAD-MDH. Our results reveal that exogenous SA could delay fruit senescence in sand pear fruit by regulating various biochemical and molecular mechanisms and can be used to effectively extend fruit shelf life during room temperature storage. However, further research is necessary to determine whether the fruits sprayed with SA are suitable for direct human consumption.
Collapse
Affiliation(s)
- Huiying Wang
- College of Horticulture, Hebei Agricultural University, Baoding 071001, China
| | - Yawei Li
- College of Horticulture, Hebei Agricultural University, Baoding 071001, China
| | - Misganaw Wassie
- Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 666300, China
| | - Liyue Huo
- College of Horticulture, Hebei Agricultural University, Baoding 071001, China
| | - Haiyan Shi
- College of Horticulture, Hebei Agricultural University, Baoding 071001, China
| |
Collapse
|
6
|
Wang H, Zheng Y, Tang X, Zhang T. Formulation of a Stable Oil-in-Water Microemulsion of Torreya grandis cv. Merrillii Aril Essential Oil and Its Application in Loquat Fruit Preservation. Foods 2023; 12:4005. [PMID: 37959124 PMCID: PMC10650603 DOI: 10.3390/foods12214005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/26/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
Loquat is a nutrient-rich fruit with juicy and sweet pulp, but it is vulnerable to rot and deterioration without proper postharvest preservation measures. This study aimed to improve the postharvest quality of loquat by developing a microemulsion system based on an essential oil extracted from the Torreya grandis cv. Merrillii aril (TaEO), which has antimicrobial and antioxidant properties. An optimal TaEO microemulsion (TaEO-ME) was formulated, using a mixture of Tween-40 and Tween-80 as the surfactant, 1-butanol as the co-surfactant, and TaEO as the oil phase, with mass ratios of 9:1, 3:1, and 6:1, respectively. Two TaEO-ME formulations with 60% and 70% water contents were stable for 180 days at room temperature, with a mean droplet size below 12 nm and polydispersity index less than 0.24. They also exhibited higher stability and enhanced biological activities compared to free TaEO. Loquat fruit treated with TaEO-ME displayed a reduced decay index and lower membrane lipid peroxidation after 15 days of storage at 15 °C, as indicated by the lower malondialdehyde content and higher peroxidase activity. Moreover, the TaEO-ME treatment preserved the nutrient quality by maintaining the total phenolic compounds and ascorbic acid content. Our findings suggested that TaEO-ME can be used as a substitute for chemical preservatives to keep fruits fresh.
Collapse
Affiliation(s)
- He Wang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212100, China;
- Jiyang College, Zhejiang Agriculture and Forestry University, Shaoxing 311800, China;
| | - Yue Zheng
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China;
| | - Xinyue Tang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212100, China;
| | - Ting Zhang
- Jiyang College, Zhejiang Agriculture and Forestry University, Shaoxing 311800, China;
| |
Collapse
|
7
|
Yao L, Zhang T, Peng S, Xu D, Liu Z, Li H, Hu L, Mo H. Fe2+ protects postharvest pitaya (Hylocereus undulatus britt) from Aspergillus. flavus infection by directly binding its genomic DNA. FOOD CHEMISTRY: MOLECULAR SCIENCES 2022; 5:100135. [PMID: 36177106 PMCID: PMC9513725 DOI: 10.1016/j.fochms.2022.100135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/30/2022] [Accepted: 09/17/2022] [Indexed: 12/02/2022]
Abstract
Light was shield on Fe2+ application as antifungal agent on pitaya postharvest. Fe2+ prevents A. flavus infection by directly binding to A. flavus DNA. This research will promote the research on the mechanism of fungal death. A new strategy was provided to combat fungal infection in fruit postharvest industry.
Aspergillus flavus (A. flavus) is a postharvest fungus, causing pitaya fruit decay and limiting pitaya value and shelf life. However, safer and more efficient methods for preventing A. flavus contamination for pitaya fruit remain to be investigated. In this study, we successfully proved exogenous Fe2+ could inhibit A. flavus colonization in pitaya fruit and extend pitaya’s shelf life after harvest. Moreover, gel electrophoresis, CD analysis and Raman spectrum tests revealed Fe2+ could more effectively and thoroughly promote conidial death by directly binding to A. flavus DNA. Increased expression of DNA damage repair-related genes after Fe2+ treatment was observed by transcription analysis, which might eventually lead to SOS response in A. flavus. These results indicated Fe2+ could prevent A. flavus infestation on pitaya in a novel, quickly responsive mechanism. Our results shed light on the potential application of Fe2+ in the food industry and provided a more universal antifungal agent against food pathogens.
Collapse
|
8
|
Jin P. Latest Advances in Preservation Technology for Fresh Fruit and Vegetables. Foods 2022; 11:3236. [PMID: 37430985 PMCID: PMC9601731 DOI: 10.3390/foods11203236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 04/28/2024] Open
Abstract
Fruit and vegetables contain abundant nutrients, as well as dietary and health benefits, and economic value, but suffer from shorter shelf life, declining quality, and rapid deterioration after harvest [...].
Collapse
Affiliation(s)
- Peng Jin
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
9
|
Zhang Z, Zhao Y, Chen X, Li W, Li W, Du J, Wang L. Effects of Cinnamon Essential Oil on Oxidative Damage and Outer Membrane Protein Genes of Salmonella enteritidis Cells. Foods 2022; 11:2234. [PMID: 35954002 PMCID: PMC9368406 DOI: 10.3390/foods11152234] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/18/2022] [Accepted: 07/25/2022] [Indexed: 12/20/2022] Open
Abstract
Salmonella is an important pathogen causing food poisoning. Food safety and health are the themes of today′s society. As a class of food-borne pathogens, Salmonella enteritidis had become one of the common zoonotic pathogens. Cinnamon essential oil (CEO) had been reported as an antibacterial agent, but there are few studies on its antibacterial mechanism. This study investigated the effects of CEO on oxidative damage and outer membrane protein genes of Salmonella enteritidis cells. First, the reactive oxygen species content in bacteria treated with different concentrations of cinnamon essential oil was determined by fluorescence spectrophotometry, and the effects of superoxide dismutase (SOD), catalase (CAT) and superoxide dismutase (SOD), and catalase (CAT) and peroxidase (POD) were determined by the kit method. The activity of POD and the content of malondialdehyde (MDA) were investigated to investigate the oxidative damage of CEO to Salmonella enteritidis cells. By analyzing the effect of CEO on the Salmonella enteritidis cell membrane’s outer membrane protein gene expression, the mechanism of CEO′s action on the Salmonella enteritidis cell membrane was preliminarily discussed. The results showed that CEO treatment had an obvious oxidative damaging effect on Salmonella enteritidis. Compared with the control group, the increase in CEO concentration caused a significant increase in the bacteria ROS content. The observation technique experiment found that with the increase in CEO concentration, the number of stained cells increased, which indicated that CEO treatment would increase the ROS level in the cells, and it would also increase with the increase in CEO concentration, thus causing the oxidation of cells and damage. In addition, CEO treatment also caused the disruption of the balance of the cellular antioxidant enzymes (SOD, CAT, POD) system, resulting in an increase in the content of MDA, a membrane lipid metabolite, and increased protein carbonylation, which ultimately inhibited the growth of Salmonella enteritidis. The measurement results of cell membrane protein gene expression levels showed that the Omp genes to be detected in Salmonella enteritidis were all positive, which indicated that Salmonella enteritidis carried these four genes. Compared with the control group, the relative expressions of OmpF, OmpA and OmpX in the CEO treatment group were significantly increased (p < 0.05), which proved that the cell function was disturbed. Therefore, the toxicity of CEO to Salmonella enteritidis could be attributed to the damage of the cell membrane and the induction of oxidative stress at the same time. It was speculated that the antibacterial mechanism of CEO was the result of multiple effects. This work was expected to provide a theoretical basis for the development of new natural food preservatives and the prevention and control of Salmonella enteritidis.
Collapse
Affiliation(s)
- Zhen Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China; (Y.Z.); (X.C.); (W.L.); (W.L.); (J.D.); (L.W.)
| | | | | | | | | | | | | |
Collapse
|