An efficient aggregation-induced electrochemiluminescent immunosensor by using TiO
2 nanoparticles as coreaction accelerator and energy donor for aflatoxin B
1 detection.
Anal Bioanal Chem 2022;
414:4837-4847. [PMID:
35513458 DOI:
10.1007/s00216-022-04106-3]
[Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/22/2022] [Accepted: 04/28/2022] [Indexed: 11/01/2022]
Abstract
Herein, we fabricated a label-free ECL immunosensor for aflatoxin B1 (AFB1) detection. In this system, a small organic aggregation-induced electrochemiluminescence luminophore, 2,5-di-tetraphenylethylene-ylthiazolo [5,4-d] thiazole, was designed, named TPETTZ. Polyaniline-wrapped TiO2 nanoparticles (PANI/TiO2 NPs) complex was synthesized through one-step in situ oxidation polymerization of aniline, and performed excellent electrical conductivity and abundant amino groups. As an ECL accelerator, TiO2 nanoparticles (TiO2 NPs) promoted the oxidation of tri-n-propylamine (TPA) to generate more TPA•; in addition, it also acted as a donor to improve the ECL intensity of TPETTZ (acceptor) through electrochemiluminescence resonance energy transfer (ECL-RET). Encouraged by the above, under the existence of TPA, TPETTZ displayed a strong and continuously stable ECLanode signal due to the introduction of PANI/TiO2 NPs. Therefore, the immunosensor was constructed for AFB1 detection based on the quenching effect of target on the ECL signal, and a linearly decreasing ECL signal was obtained as the increasement of AFB1 in the range of 75 fg/mL to 100 ng/mL, with a lower detection limit of 27.5 fg/mL. Moreover, the as-prepared sensing platform performed a satisfactory anti-interference, stability, and reproducibility, and appeared a good accuracy in walnut sample analysis, presenting a promising application in the future.
Collapse