1
|
Gorjanović S, Zlatanović S, Laličić-Petronijević J, Dodevska M, Micić D, Stevanović M, Pastor F. Enhancing composition and functionality of jelly candies through apple and beetroot pomace flour addition. NPJ Sci Food 2024; 8:85. [PMID: 39455671 PMCID: PMC11511959 DOI: 10.1038/s41538-024-00323-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 10/02/2024] [Indexed: 10/28/2024] Open
Abstract
The functionalization of food products with agri-industial residues is of great interest. Apple and beetroot pomace flour, abundant in dietary fiber and antioxidants, were incorporated into jelly candies using agar, pectin, or gelatin. Three functional formulations were devised for each flour type at the pilot scale, resulting in jelly candies with desirable sensory properties and texture. The high content of total polyphenolics, flavonoids, betacyanins, and betaxantines was determined upon in vitro digestion. The influence of different matrices on these bioactives, crucial for exerting antioxidant activity, was evaluated using DPPH and FRAP assays on both fresh and nine-month stored jelly candies, showcasing good bioavailability and retention. Enrichment with APF and BPF also led to reduced postprandial glucose levels, glycemic index, and load determined in vivo. These findings affirm that compositionally optimized innovative formulations of jelly candies facilitate the efficient delivery of compounds with anti-obesity effect from upcycled raw materials.
Collapse
Affiliation(s)
- Stanislava Gorjanović
- Institute of General and Physical Chemistry, 11158, Belgrade, Serbia, Studentski trg 12/V
| | - Snežana Zlatanović
- Institute of General and Physical Chemistry, 11158, Belgrade, Serbia, Studentski trg 12/V.
| | | | - Margarita Dodevska
- Institute of Public Health of Serbia Dr Milan Jovanović Batut, 11000, Belgrade, Serbia, Dr Subotica 5
| | - Darko Micić
- Institute of General and Physical Chemistry, 11158, Belgrade, Serbia, Studentski trg 12/V
| | - Milica Stevanović
- University of Belgrade, Faculty of Agriculture, 11080, Belgrade, Serbia, Nemanjina 6
| | - Ferenc Pastor
- University of Belgrade, Faculty of Chemistry, 11158, Belgrade, Serbia, Studentski trg 16
| |
Collapse
|
2
|
Rashmi HB, Negi PS. Upcycling Surinam cherry and spine gourd fruit waste: development of anthelmintic jelly candies using fruit extracts. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2024; 61:1905-1918. [PMID: 39285986 PMCID: PMC11401820 DOI: 10.1007/s13197-024-05967-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 02/25/2024] [Accepted: 03/02/2024] [Indexed: 09/19/2024]
Abstract
Under-utilized fruits and vegetables are rich in nutraceuticals and have several medicinal properties. A large group of people widely consumes gummies and jelly candies, which can serve as an excellent vehicle to increase the intake of functional components. In the present study, jelly candies were developed by incorporating fruit extracts from commonly wasted segments of two under-utilized fruits (Surinam cherry and Spine gourd). Jelly candies were evaluated for their anthelmintic efficacy against Caenorhabditis elegans along with various physicochemical, microbial, colour, texture, and sensory parameters immediately after preparation, as well as during 150 days of storage at two conditions (ambient and accelerated). Ready-to-consume jelly candies (5 g) contained 0.21 g of fruit extract in Surinam cherry and 0.35 g of fruit extract in Spine gourd jelly candies. Jelly candies exhibited TSS in the range of 70.40 - 71.37°Brix, pH 2.33 to 2.84, aw 0.70-0.75, moisture 10.57-15.88%, a* value 5.33-1.27, b*value 10.66-1.28, no microbial contamination, and acceptable sensory parameters. Surinam cherry extract candy (4 mg/ml) showed a higher anthelmintic effect than Spine gourd extract candy (6.66 mg/ml) based on egg inhibition, larval death, and average adult worm paralysis time assays. These fruit extract-incorporated candies can be a novel healthier food product with anthelmintic potential, which can be an alternative to commonly used anthelmintic drugs. Graphical abstract Supplementary Information The online version contains supplementary material available at 10.1007/s13197-024-05967-5.
Collapse
Affiliation(s)
- Havalli Bommegowda Rashmi
- Fruit and Vegetable Technology Department, CSIR-Central Food Technological Research Institute, Mysuru, 570 020 India
- Present Address: Department of Postharvest Management, College of Horticulture, University of Horticultural Sciences, Yelawala, Bagalkot, Mysuru, 571130 India
| | - Pradeep Singh Negi
- Fruit and Vegetable Technology Department, CSIR-Central Food Technological Research Institute, Mysuru, 570 020 India
| |
Collapse
|
3
|
Sarkar P, Bhattacharjee P, Das B. Development of an Antioxidant-Rich Sugar-Free Plantain Candy and Assessment of Its Shelf Life in a Flexible Laminate. Food Technol Biotechnol 2024; 62:162-176. [PMID: 39045296 PMCID: PMC11261650 DOI: 10.17113/ftb.62.02.24.8141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 03/26/2024] [Indexed: 07/25/2024] Open
Abstract
Research background Candy is a popular confection worldwide, and it would be beneficial to society if it were converted into a source of antioxidant molecules to eliminate its adverse health effects. The amount of antioxidants available even in fruit candies is questionable due to the high thermal processing losses they undergo and the presence of various food additives. Plantains (Musa paradisiaca) are less known as good sources of biotherapeutic antioxidants, namely l-tryptophan, serotonin and melatonin, and consumption of this highly nutritious fruit is limited to underdeveloped and developing countries. The objectives of this study are: to develop a functional antioxidant-rich sugar-free plantain-based candy with valuable contents of the mentioned biomolecules in synergy; and to ensure its extended shelf life without compromising its physicochemical properties and functionality by wrapping it with a suitable packaging laminate. Experimental approach To accomplish the first objective, lyophilized plantain powder, sorbitol and mannitol were used as base materials with minimal additives under minimal processing conditions to reduce processing loss. Sensory, proximate, physicochemical and phytochemical properties, including the antioxidant synergy among the mentioned biomolecules of the developed candies were evaluated. For the second objective, the candies were enclosed in two different flexible packaging laminates and the optimal packaging was determined based on the microbiological safety and sensory appeal of the wrapped candies. Subsequently, the above-mentioned properties of the packaged (in the most suitable laminate) candies were evaluated at regular time intervals during storage for assessment of their shelf life. Results and conclusions The candy had a characteristic flavour of plantain, uniform dark brown colour, rich mouthfeel, pleasant aroma, moderately hard texture and moderate sweetness, along with high antioxidant activity and considerable content of l-tryptophan, serotonin and melatonin (present as a synergistic consortium). During storage of the packaged candy under ambient conditions, it remained microbiologically safe for up to 56 days, and also maintained sensory attributes, antioxidant activity and synergy compared to the control candy. Novelty and scientific contribution This newly developed semi-hard sugar-free candy with high antioxidant content, containing three important antioxidants, namely l-tryptophan, serotonin and melatonin, could be a good source of biotherapeutic molecules and a substitute for commercial candies consumed globally.
Collapse
Affiliation(s)
- Poulami Sarkar
- Department of Food Technology and Biochemical Engineering, Jadavpur University, 188, Raja S.C. Mallick Road, 700032 Kolkata, West Bengal, India
| | - Paramita Bhattacharjee
- Department of Food Technology and Biochemical Engineering, Jadavpur University, 188, Raja S.C. Mallick Road, 700032 Kolkata, West Bengal, India
| | - Bidhan Das
- Eastern Regional Centre, Indian Institute of Packaging, Block C. P. 10, Sector V, Salt Lake, Bidhan Nagar, 700091 Kolkata, West Bengal, India
| |
Collapse
|
4
|
Gümüş T, Altan Kamer DD, Kaynarca GB. Investigating the potential of wine lees as a natural colorant and functional ingredient in jelly production. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:1357-1366. [PMID: 37776325 DOI: 10.1002/jsfa.13014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 09/25/2023] [Accepted: 09/30/2023] [Indexed: 10/02/2023]
Abstract
BACKGROUND The purpose of this study was to evaluate the potential of incorporating wine lees (WL), an inexpensive and widely available high-value winery waste product, into gelatin-based jellies to improve their technological and functional properties. We also aimed to evaluate the suitability of WL as a jelly colorant by comparing it with a commercial colorant. RESULTS Wine lees were characterized for their anthocyanin, phenolic, antioxidant, and mineral content. Subsequently, physicochemical, functional, textural, rheological, and thermal analyses were conducted on soft candies containing 21, 14, and 7 g kg-1 WL (labeled as WL30, WL20, and WL10, respectively). The total phenolic, anthocyanin, antioxidant, and cupric-reducing antioxidant capacity (CUPRAC) values of WL30 were determined as 57.80 ± 6.12 mg gallic acid equivalent per kilogram (GAE kg-1 ), 17.58 ± 0.36 mg malvidin-3-glucoside equivalent kg-1 , 0.04 ± 0.01 μg mL-1 , and 45.55 ± 1.00 mmol L-1 Trolox equivalent (TE), respectively. The control sample had the best rheological characteristics, including K', G', and n*, as well as the greatest hardness value, followed by WL30. However, during the storage period, WL30 exhibited superior color stability and retained higher levels of phenolic and anthocyanin components in comparison with the control sample. CONCLUSION Wine lees have the potential to be utilized as a natural colorant and alternative flavoring agent in jelly production. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Tuncay Gümüş
- Department of Food Engineering, Faculty of Agriculture, Tekirdağ Namik Kemal University, Tekirdağ, Turkey
| | - Deniz Damla Altan Kamer
- Department of Food Engineering, Faculty of Agriculture, Tekirdağ Namik Kemal University, Tekirdağ, Turkey
| | - Gülce Bedis Kaynarca
- Department of Food Engineering, Faculty of Engineering, Kirklareli University, Kirklareli, Turkey
| |
Collapse
|
5
|
Palachum W, Klangbud WK, Chisti Y. Novel nutritionally-enriched gummy jelly infused with nipa palm vinegar powder and nipa palm syrup as functional food ingredients. Heliyon 2023; 9:e21873. [PMID: 38027860 PMCID: PMC10663921 DOI: 10.1016/j.heliyon.2023.e21873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 10/12/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Abstract
The objective of this research was to develop a nutritionally-enriched gummy jelly product incorporating nipa palm vinegar powder (NPVp; a nutrients-rich vinegar) and nipa palm syrup (NPS), a nutrients-rich sweetener with a low glycemic index. A gummy jelly product was developed based on sensory acceptance tests. The water activity and the moisture content of the final product were within the acceptable range for preservation under ambient conditions. The final product had a total phenolic content of 861 μg gallic acid equivalent (GAE) per g and an antioxidant activity (2,2-diphenyl-1-picrylhydrazyl (DPPH) inhibition) of 72.7 %. The final product had the following nutritional attributes (per 100 g dry mass): 319.7 kcal of energy, 8.8 g protein, 0.2 g fats, 70.6 g carbohydrates, 59.9 g total sugars, 0.7 g of total dietary fibers, 34.6 mg calcium, 0.3 mg iron, 168.0 mg sodium, and 774.7 mg vitamin C. The in vitro glycemic index of the product was 27.4. Based on their nutrients-content, NPVp and NPS were suitable for use in other functional food products.
Collapse
Affiliation(s)
- Wilawan Palachum
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Thasala, Nakhon Si Thammarat 80161, Thailand
- Center of Excellence Research for Melioidosis and Microorganisms (CERMM), Walailak University, Thasala, Nakhon Si Thammarat 80161, Thailand
| | - Wiyada Kwanhian Klangbud
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Thasala, Nakhon Si Thammarat 80161, Thailand
- Center of Excellence Research for Melioidosis and Microorganisms (CERMM), Walailak University, Thasala, Nakhon Si Thammarat 80161, Thailand
| | - Yusuf Chisti
- Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| |
Collapse
|
6
|
Meccatti VM, Martins KMC, Ramos LDP, Pereira TC, de Menezes RT, Marcucci MC, Abu Hasna A, de Oliveira LD. Synergistic Antibiofilm Action of Cinnamomum verum and Brazilian Green Propolis Hydroethanolic Extracts against Multidrug-Resistant Strains of Acinetobacter baumannii and Pseudomonas aeruginosa and Their Biocompatibility on Human Keratinocytes. Molecules 2023; 28:6904. [PMID: 37836747 PMCID: PMC10574440 DOI: 10.3390/molecules28196904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 10/15/2023] Open
Abstract
The accumulated dental biofilm can be a source of oral bacteria that are aspirated into the lower respiratory tract causing ventilator-associated pneumonia in hospitalized patients. The aim of this study was to evaluate the synergistic antibiofilm action of the produced and phytochemically characterized extracts of Cinnamomum verum and Brazilian green propolis (BGP) hydroethanolic extracts against multidrug-resistant clinical strains of Acinetobacter baumannii and Pseudomonas aeruginosa, in addition to their biocompatibility on human keratinocyte cell lines (HaCaT). For this, High-performance liquid chromatography analysis of the plant extracts was performed; then the minimum inhibitory and minimum bactericidal concentrations of the extracts were determined; and antibiofilm activity was evaluated with MTT assay to prevent biofilm formation and to reduce the mature biofilms. The cytotoxicity of the extracts was verified using the MTT colorimetric test, evaluating the cellular enzymatic activity. The data were analyzed with one-way ANOVA and Tukey's tests as well as Kruskal-Wallis and Dunn's tests, considering a significance level of 5%. It was possible to identify the cinnamic aldehyde in C. verum and p-coumaric, caffeic, and caffeoylquinic acids as well as flavonoids such as kaempferol and kaempferide and Artepillin-C in BGP. The combined extracts were effective in preventing biofilm formation and reducing the mature biofilms of A. baumannii and P. aeruginosa. Moreover, both extracts were biocompatible in different concentrations. Therefore, C. verum and BGP hydroethanolic extracts have bactericidal and antibiofilm action against multidrug resistant strains of A. baumannii and P. aeruginosa. In addition, the combined extracts were capable of expressively inhibiting the formation of A. baumannii and P. aeruginosa biofilms (prophylactic effect) acting similarly to 0.12% chlorhexidine gluconate.
Collapse
Affiliation(s)
- Vanessa Marques Meccatti
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (ICT-UNESP), São José dos Campos 12245-000, SP, Brazil; (V.M.M.); (M.C.M.); (L.D.d.O.)
| | - Karoline Moura Chagas Martins
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (ICT-UNESP), São José dos Campos 12245-000, SP, Brazil; (V.M.M.); (M.C.M.); (L.D.d.O.)
| | - Lucas de Paula Ramos
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (ICT-UNESP), São José dos Campos 12245-000, SP, Brazil; (V.M.M.); (M.C.M.); (L.D.d.O.)
| | - Thaís Cristine Pereira
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (ICT-UNESP), São José dos Campos 12245-000, SP, Brazil; (V.M.M.); (M.C.M.); (L.D.d.O.)
| | - Raquel Teles de Menezes
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (ICT-UNESP), São José dos Campos 12245-000, SP, Brazil; (V.M.M.); (M.C.M.); (L.D.d.O.)
| | - Maria Cristina Marcucci
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (ICT-UNESP), São José dos Campos 12245-000, SP, Brazil; (V.M.M.); (M.C.M.); (L.D.d.O.)
| | - Amjad Abu Hasna
- Department of Restorative Dentistry, Endodontics Division, Institute of Science and Technology, São Paulo State University (ICT-UNESP), São José dos Campos 12245-000, SP, Brazil
| | - Luciane Dias de Oliveira
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (ICT-UNESP), São José dos Campos 12245-000, SP, Brazil; (V.M.M.); (M.C.M.); (L.D.d.O.)
| |
Collapse
|
7
|
Segueni N, Boutaghane N, Asma ST, Tas N, Acaroz U, Arslan-Acaroz D, Shah SRA, Abdellatieff HA, Akkal S, Peñalver R, Nieto G. Review on Propolis Applications in Food Preservation and Active Packaging. PLANTS (BASEL, SWITZERLAND) 2023; 12:1654. [PMID: 37111877 PMCID: PMC10142627 DOI: 10.3390/plants12081654] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 06/19/2023]
Abstract
Propolis is a natural hive product collected by honeybees from different plants and trees. The collected resins are then mixed with bee wax and secretions. Propolis has a long history of use in traditional and alternative medicine. Propolis possesses recognized antimicrobial and antioxidant properties. Both properties are characteristics of food preservatives. Moreover, most propolis components, in particular flavonoids and phenolic acids, are natural constituents of food. Several studies suggest that propolis could find use as a natural food preservative. This review is focused on the potential application of propolis in the antimicrobial and antioxidant preservation of food and its possible application as new, safe, natural, and multifunctional material in food packaging. In addition, the possible influence of propolis and its used extracts on the sensory properties of food is also discussed.
Collapse
Affiliation(s)
- Narimane Segueni
- Laboratory of Natural Product and Organic Synthesis, Department of Chemistry, Faculty of Science, Campus Chaabat Ersas, University Mentouri–Constantine 1, Constantine 25000, Algeria
- Faculty of Medicine, University Salah Boubnider Constantine 3, Constantine 25000, Algeria
| | - Naima Boutaghane
- Laboratoire d’Obtention des Subtances Thérapeutiques (LOST), Département de Chimie, Campus Chaabet-Ersas, Université des Frères Mentouri-Constantine 1, Constantine 25000, Algeria
| | - Syeda Tasmia Asma
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Afyon Kocatepe University, Afyonkarahisar 03200, Turkey
| | - Nuri Tas
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Afyon Kocatepe University, Afyonkarahisar 03200, Turkey
| | - Ulas Acaroz
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Afyon Kocatepe University, Afyonkarahisar 03200, Turkey
- ACR Bio Food and Biochemistry Research and Development, Afyonkarahisar 03200, Turkey
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Kyrgyz-Turkish Manas University, Bishkek KG-720038, Kyrgyzstan
| | - Damla Arslan-Acaroz
- ACR Bio Food and Biochemistry Research and Development, Afyonkarahisar 03200, Turkey
- Department of Biochemistry, Faculty of Veterinary Medicine, Afyon Kocatepe University, Afyonkarahisar 03200, Turkey
- Department of Biochemistry, Faculty of Veterinary Medicine, Kyrgyz-Turkish Manas University, Bishkek KG-720038, Kyrgyzstan
| | - Syed Rizwan Ali Shah
- Department of Animal Nutrition and Nutritional Diseases, Faculty of Veterinary Medicine, Afyon Kocatepe University, Afyonkarahisar 03200, Turkey
| | - Hoda A. Abdellatieff
- Department of Pathology, Faculty of Veterinary Medicine, Damanhour University, El-Beheira, Damanhour 22514, Egypt
| | - Salah Akkal
- Unit of Recherche Valorisation of Natural Resources, Bioactive Molecules and Analyses Physicochemical and Biological (VARENBIOMOL), Department of Chemistry, Faculty of Science, University Mentouri-Constantine 1, Constantine 25000, Algeria
| | - Rocío Peñalver
- Department of Food Technology, Food Science and Nutrition, Faculty of Veterinary Sciences, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, Espinardo, 30071 Murcia, Spain
| | - Gema Nieto
- Department of Food Technology, Food Science and Nutrition, Faculty of Veterinary Sciences, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, Espinardo, 30071 Murcia, Spain
| |
Collapse
|
8
|
Revalorisation of Sage ( Salvia lavandulifolia Vahl) By-Product Extracts as a Source of Polyphenol Antioxidants for Novel Jelly Candies. Antioxidants (Basel) 2023; 12:antiox12010159. [PMID: 36671021 PMCID: PMC9854814 DOI: 10.3390/antiox12010159] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/04/2023] [Accepted: 01/06/2023] [Indexed: 01/11/2023] Open
Abstract
Sage (Salvia lavandulifolia Vahl) aqueous extracts (SE) obtained from distillation by-products were assessed as antioxidants for nutritionally enhanced jelly candies. Two experimental SEs with a different content of phenolic acids and flavonoids were tested: (i) SE38 (37.6 mg/g) and (ii) SE70 (69.8 mg/g), with salvianic and rosmarinic acids as main polyphenols, respectively. Flavour alteration, stability of sage polyphenols, physical quality traits and antioxidant capacity (AC) were studied in strawberry candies formulated without sugars and enriched with SEs at 0.25, 0.50 and 0.75 g/kg. Despite their different quantitative composition, SE38 and SE70 provided similar antioxidant properties, which were dose dependent. Salvianic and rosmarinic acids were stable without degrading to candy processing (up to 80 °C), keeping their antioxidant potential. There were no relevant differences in flavour or physical traits (pH, °Brix and CIELab colour) between untreated and SE-enriched strawberry candies. The addition of 0.75 g SE/kg resulted in relevant increases of candy AC: (i) from 30 to 38 mg GAE/100 g (total phenolics); (ii) from 10 to 17 mg TE/100 g (DPPH• radical scavenging assay); (iii) from 5 to 13 mg TE/100 g (ABTS·+ radical scavenging assay); (iv) from 84 to 163 µmol Fe2+/100 g (FRAP capacity) and (v) from to 75 to 83% (inhibition of deoxyribose damage). Sage distillation by-products can be revalorised as a source of natural antioxidants to produce healthier candies.
Collapse
|
9
|
Enhancement of the Antioxidant Capacity of Thyme and Chestnut Honey by Addition of Bee Products. Foods 2022; 11:foods11193118. [PMID: 36230193 PMCID: PMC9564292 DOI: 10.3390/foods11193118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/01/2022] [Accepted: 10/05/2022] [Indexed: 11/23/2022] Open
Abstract
Honey consumption and imports have increased in recent years, and it is considered by consumers to be a healthy alternative to more commonly used sweeteners. Honey contains a mixture of polyphenols and antioxidant compounds, and the botanical origin and geographical area of collection play an important role on its chemical composition. The present study investigated the physicochemical properties, total phenolic content and antioxidant capacity of Spanish thyme honey and chestnut honey, and their mixtures with royal jelly (2% and 10%) and propolis (2% and 10%). The analysis of the physicochemical parameters of both honey samples showed values within the established limits. Propolis showed the highest value of total phenolic content (17.21–266.83 mg GAE/100 g) and antioxidant capacity (DPPH, ORAC and ABTS assays; 0.63–24.10 µg eq. Tx/g, 1.61–40.82 µg eq. Tx/g and 1.89–68.54 µg eq. Tx/g, respectively), and significantly reduced ROS production in human hepatoma cells. In addition, mixtures of honey with 10% of propolis improved the results obtained with natural honey, increasing the value of total phenolic content and antioxidant capacity. A significant positive correlation was observed between total phenolic compounds and antioxidant capacity. Therefore, the antioxidant capacity could be attributed to the phenolic compounds present in the samples, at least partially. In conclusion, our results indicated that thyme and chestnut honey supplemented with propolis can be an excellent natural source of antioxidants and could be incorporated as a potential food ingredient with biological properties of technological interest, added as a preservative. Moreover, these mixtures could be used as natural sweeteners enriched in antioxidants and other bioactive compounds.
Collapse
|
10
|
The Honey Bee Apis mellifera: An Insect at the Interface between Human and Ecosystem Health. BIOLOGY 2022; 11:biology11020233. [PMID: 35205099 PMCID: PMC8869587 DOI: 10.3390/biology11020233] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/21/2022] [Accepted: 01/26/2022] [Indexed: 02/04/2023]
Abstract
Simple Summary Apis mellifera Linnaeus (1758), a honey bee, is a eusocial insect widely known for its role in pollination, an essential ecosystem service for plant biodiversity, and quality of vegetables and fruit products. In addition, honey bees and bee products are valuable bioindicators of pollutants, such as airborne particulate matter, heavy metals, and pesticides. In this review, we explore the provisioning, regulating, and cultural services provided by the honey bee, an insect at the interface between human and ecosystem health. Abstract The concept of ecosystem services is widely understood as the services and benefits thatecosystems provide to humans, and they have been categorised into provisioning, regulating, supporting, and cultural services. This article aims to provide an updated overview of the benefits that the honey bee Apis mellifera provides to humans as well as ecosystems. We revised the role of honey bees as pollinators in natural ecosystems to preserve and restore the local biodiversity of wild plants; in agro-ecosystems, this species is widely used to enhance crop yield and quality, meeting the increasing food demand. Beekeeping activity provides humans not only with high-quality food but also with substances used as raw materials and in pharmaceuticals, and in polluted areas, bees convey valuable information on the environmental presence of pollutants and their impact on human and ecosystem health. Finally, the role of the honey bee in symbolic tradition, mysticism, and the cultural values of the bee habitats are also presented. Overall, we suggest that the symbolic value of the honey bee is the most important role played by this insect species, as it may help revitalise and strengthen the intimate and reciprocal relationship between humans and the natural world, avoiding the inaccuracy of considering the ecosystems as mere providers of services to humans.
Collapse
|