1
|
Zhang W, Sun C, Wang W, Zhang Z. Bioremediation of Aflatoxin B 1 by Meyerozyma guilliermondii AF01 in Peanut Meal via Solid-State Fermentation. Toxins (Basel) 2024; 16:305. [PMID: 39057945 PMCID: PMC11280932 DOI: 10.3390/toxins16070305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/22/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
The use of microorganisms to manage aflatoxin contamination is a gentle and effective approach. The aim of this study was to test the removal of AFB1 from AFB1-contaminated peanut meal by a strain of Meyerozyma guilliermondii AF01 screened by the authors and to optimize the conditions of the biocontrol. A regression model with the removal ratio of AFB1 as the response value was established by means of single-factor and response surface experiments. It was determined that the optimal conditions for the removal of AFB1 from peanut meal by AF01 were 75 h at 29 °C under the natural pH, with an inoculum of 5.5%; the removal ratio of AFB1 reached 69.31%. The results of simulating solid-state fermentation in production using shallow pans and fermentation bags showed that the removal ratio of AFB1 was 68.85% and 70.31% in the scaled-up experiments, respectively. This indicated that AF01 had strong adaptability to the environment with facultative anaerobic fermentation detoxification ability. The removal ratio of AFB1 showed a positive correlation with the growth of AF01, and there were no significant changes in the appearance and quality of the peanut meal after fermentation. This indicated that AF01 had the potential to be used in practical production.
Collapse
Affiliation(s)
- Wan Zhang
- College of Engineering, China Agricultural University, No. 17 Tsinghua East Road, Beijing 100083, China;
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China;
| | - Changpo Sun
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China;
| | - Wei Wang
- College of Engineering, China Agricultural University, No. 17 Tsinghua East Road, Beijing 100083, China;
| | - Zhongjie Zhang
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China;
| |
Collapse
|
2
|
Ali S, Freire LGD, Rezende VT, Noman M, Ullah S, Abdullah, Badshah G, Afridi MS, Tonin FG, de Oliveira CAF. Occurrence of Mycotoxins in Foods: Unraveling the Knowledge Gaps on Their Persistence in Food Production Systems. Foods 2023; 12:4314. [PMID: 38231751 DOI: 10.3390/foods12234314] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 11/20/2023] [Accepted: 11/28/2023] [Indexed: 01/19/2024] Open
Abstract
In this review, the intricate issue about the occurrence levels of mycotoxins in foods is discussed aiming to underline the main knowledge gaps on the persistence of these toxicants in the food production system. Mycotoxins have been a key challenge to the food industry, economic growth, and consumers' health. Despite a breadth of studies over the past decades, the persistence of mycotoxins in foods remain an overlooked concern that urges exploration. Therefore, we aimed to concisely underline the matter and provide possible biochemical and metabolic details that can be relevant to the food sector and overall public health. We also stress the application of computational modeling, high-throughput omics, and high-resolution imaging approaches, which can provide insights into the structural and physicochemical characteristics and the metabolic activities which occur in a stored cereal grain's embryo and endosperm and their relationship with storage fungi and mycotoxins on a cellular level. In addition, there is a need for extensive collaborative network and funding, which will play a key role in finding effective solutions against the persistence of mycotoxins at the genetic and molecular to metabolic levels in the food system.
Collapse
Affiliation(s)
- Sher Ali
- Department of Food Engineering, Faculty of Animal Science and Food Engineering (FZEA), University of São Paulo (USP), Pirassununga 13635-900, SP, Brazil
| | - Lucas Gabriel Dionisio Freire
- Department of Food Engineering, Faculty of Animal Science and Food Engineering (FZEA), University of São Paulo (USP), Pirassununga 13635-900, SP, Brazil
| | - Vanessa Theodoro Rezende
- Faculty of Veterinary and Animal Science (FMVZ), University of São Paulo (USP), Pirassununga 13635-900, SP, Brazil
| | - Muhammad Noman
- Plant Molecular Physiology, Department of Biology, Federal University of Lavras (UFLA), Lavras 37200-000, MG, Brazil
| | - Sana Ullah
- Department of Food Engineering, Faculty of Animal Science and Food Engineering (FZEA), University of São Paulo (USP), Pirassununga 13635-900, SP, Brazil
| | - Abdullah
- Department of Health and Biological Sciences, Abasyn University Peshawar (AUP), Peshawar 25000, Khyber Pakhtunkhwa, Pakistan
| | - Gul Badshah
- Department of Chemistry, Federal University of Paraná (UFPR), Curitiba 81530-000, PR, Brazil
| | - Muhammad Siddique Afridi
- Department of Plant Pathology, Federal University of Lavras (UFLA), Lavras 37200-900, MG, Brazil
| | - Fernando Gustavo Tonin
- Department of Biosystems Engineering, Faculty of Animal Science and Food Engineering (FZEA), University of São Paulo (USP), Pirassununga 13635-900, SP, Brazil
| | - Carlos Augusto Fernandes de Oliveira
- Department of Food Engineering, Faculty of Animal Science and Food Engineering (FZEA), University of São Paulo (USP), Pirassununga 13635-900, SP, Brazil
| |
Collapse
|
3
|
Wang SY, Herrera-Balandrano DD, Shi XC, Chen X, Liu FQ, Laborda P. Occurrence of aflatoxins in water and decontamination strategies: A review. WATER RESEARCH 2023; 232:119703. [PMID: 36758357 DOI: 10.1016/j.watres.2023.119703] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/06/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
Aflatoxins are highly carcinogenic metabolites produced by some Aspergillus species and are the most prevalent mycotoxins. Although aflatoxins are commonly synthesized during fungal colonization in preharvest maize, cereals, and nuts, they can be transported by rainfall to surface water and are a common toxin found in wastewater from some food industries. Here, the occurrence of aflatoxins in bodies of water is reviewed for the first time, along with the decontamination methods. Aflatoxins have been detected in surface, wastewater and drinking water, including tap and bottled water. The specific sources of water contamination remain unclear, which is an important gap that must be addressed in future research. Two main kinds of decontamination methods have been reported, including degradation and adsorption. The best degradation rates were observed using gamma and UV irradiations, oxidoreductases and ozone, while the best adsorption abilities were observed with minerals, polyvinyl alcohol, durian peel and activated carbon. Synthetic polymers could be used as membranes in pipes to remove aflatoxins in water flows. Although most decontamination methods were screened using AFB1, the other commonly found aflatoxins were not used in the screenings. Overall, the occurrence of aflatoxins in water could be a significant emerging public health concern largely ignored by local and international legislation. Numerous advances have been reported for the decontamination of aflatoxins in water; however, there is still a long way to go to put them into practice.
Collapse
Affiliation(s)
- Su-Yan Wang
- School of Life Sciences, Nantong University, Nantong 226019, China
| | | | - Xin-Chi Shi
- School of Life Sciences, Nantong University, Nantong 226019, China
| | - Xin Chen
- School of Life Sciences, Nantong University, Nantong 226019, China
| | - Feng-Quan Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, China.
| | - Pedro Laborda
- School of Life Sciences, Nantong University, Nantong 226019, China.
| |
Collapse
|
4
|
Xu X, Liu W, Niu H, Hua M, Su Y, Miao X, Chi Y, Xu H, Wang J, Sun M, Li D. Study on the fermentation effect of Rhodotorula glutinis utilizing tofu whey wastewater and the influence of Rhodotorula glutinis on laying hens. Front Nutr 2023; 10:1125720. [PMID: 36908914 PMCID: PMC9998534 DOI: 10.3389/fnut.2023.1125720] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/07/2023] [Indexed: 03/14/2023] Open
Abstract
Background Tofu whey wastewater (TWW) is the wastewater of tofu processing, which is rich in a variety of nutrients. Rhodotorula glutinis can make full use of TWW to ferment and reproduce yeast cells, produce carotenoids and other nutrients, improve the utilization value of TWW, and reduce environmental pollution and resource waste. Methods In this study, the nutrient composition changes of TWW treated by Rhodotorula glutinis were analyzed to reformulate TWW medium, and the optimal composition and proportion of TWW medium that can improve the biomass and carotenoids production of Rhodotorula glutinis were explored. Meanwhile, the Rhodotorula glutinis liquid obtained under these conditions was used to prepare biological feed for laying hens, and the effect of Rhodotorula glutinis growing on TWW as substrate on laying performance and egg quality of laying hens were verified. Results The results showed that the zinc content of TWW after Rhodotorula glutinis fermentation increased by 62.30%, the phosphorus content decreased by 42.31%, and the contents of vitamin B1, B2 and B6 increased to varying degrees. The optimal fermentation conditions of Rhodotorula glutinis in the TWW medium were as follow: the initial pH was 6.40, the amount of soybean oil, glucose and zinc ions was 0.80 ml/L, 16.32 g/L, and 20.52 mg/L, respectively. Under this condition, the biomass of Rhodotorula glutinis reached 2.23 g/L, the carotenoids production was 832.86 μg/g, and the number of effective viable yeast count was 7.08 × 107 cfu/ml. In addition, the laying performance and egg quality of laying hens fed Rhodotorula glutinis biological feed were improved. Discussion In this study, we analyzed the composition changes of TWW, optimized the fermentation conditions of Rhodotorula glutinis in TWW medium, explored the influence of Rhodotorula glutinis utilizing TWW on laying layers, and provided a new idea for the efficient utilization of TWW.
Collapse
Affiliation(s)
- Xifei Xu
- Department of Food Science and Engineering, College of Agriculture, Yanbian University, Yanji, China.,Laboratory of Food Microbiology, Institute of Agro-product Process, Jilin Academy of Agricultural Science, Changchun, China
| | - Wenjian Liu
- Laboratory of Food Microbiology, Institute of Agro-product Process, Jilin Academy of Agricultural Science, Changchun, China.,Department of Microbiology, College of Life Sciences, Jilin Normal University, Siping, China
| | - Honghong Niu
- Laboratory of Food Microbiology, Institute of Agro-product Process, Jilin Academy of Agricultural Science, Changchun, China
| | - Mei Hua
- Laboratory of Food Microbiology, Institute of Agro-product Process, Jilin Academy of Agricultural Science, Changchun, China
| | - Ying Su
- Laboratory of Food Microbiology, Institute of Agro-product Process, Jilin Academy of Agricultural Science, Changchun, China
| | - Xinyu Miao
- Laboratory of Food Microbiology, Institute of Agro-product Process, Jilin Academy of Agricultural Science, Changchun, China
| | - Yanping Chi
- Laboratory of Food Microbiology, Institute of Agro-product Process, Jilin Academy of Agricultural Science, Changchun, China
| | - Hongyan Xu
- Department of Food Science and Engineering, College of Agriculture, Yanbian University, Yanji, China
| | - Jinghui Wang
- Laboratory of Food Microbiology, Institute of Agro-product Process, Jilin Academy of Agricultural Science, Changchun, China
| | - Mubai Sun
- Laboratory of Food Microbiology, Institute of Agro-product Process, Jilin Academy of Agricultural Science, Changchun, China
| | - Da Li
- Laboratory of Food Microbiology, Institute of Agro-product Process, Jilin Academy of Agricultural Science, Changchun, China
| |
Collapse
|