1
|
Guaita A, Gambi L, Baresi P, Paterlini F, Bolzoni G, Zanardi G, Daminelli P. Spore-Forming Clostridia in Raw Cow Milk from Northern Italy: A Trend Analysis over the Past 20 Years. Foods 2024; 13:3638. [PMID: 39594054 PMCID: PMC11593484 DOI: 10.3390/foods13223638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/07/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
Clostridium species are known for their impact on animal and human health, but also for the spoilage of foodstuffs. Their spores contaminate milk and result in germination and gas production, the latter being particularly evident in the cheeses that suffer severe depreciation. To address this issue, the Primary Production Department of the IZSLER institute in Brescia, Italy conducts the Most Probable Number (MPN) method on bovine milk samples collected from Northern Italian dairies between 2004 and 2023. This approach leverages two semi-quantitative protocols, S2 and S3, to detect Clostridium species spore forms upon customer request. Here, we would like to present an a-posteriori analysis on the results of the S2 and S3 protocols. The goal of this study is to highlight the differences between these two methods and provide evidence of the actual decrease in Clostridium species in raw cow milk over a 20-year period. Our analysis shows that client demand for S2 has progressively decreased, while S3's has remained constant, and both protocols reveal a significant reduction in positives; furthermore, S3's greater sensitivity made it more responsive to environmental changes. This highlights the necessity of choosing the appropriate testing protocol that accounts for both regulatory standards and environmental factors. Overall, our findings underscore the importance of continued monitoring to manage Clostridium species contamination and ensure milk quality.
Collapse
Affiliation(s)
- Arianna Guaita
- National Reference Center for Bovine Milk Quality, Via A. Bianchi 9, 25124 Brescia, Italy;
| | - Lorenzo Gambi
- “Produzione Primaria” Department, Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna “Bruno Ubertini” (IZSLER), Via A. Bianchi 9, 25124 Brescia, Italy (F.P.)
| | - Pierluigi Baresi
- “Produzione Primaria” Department, Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna “Bruno Ubertini” (IZSLER), Via A. Bianchi 9, 25124 Brescia, Italy (F.P.)
| | - Franco Paterlini
- “Produzione Primaria” Department, Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna “Bruno Ubertini” (IZSLER), Via A. Bianchi 9, 25124 Brescia, Italy (F.P.)
| | - Giuseppe Bolzoni
- “Produzione Primaria” Department, Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna “Bruno Ubertini” (IZSLER), Via A. Bianchi 9, 25124 Brescia, Italy (F.P.)
| | - Giorgio Zanardi
- “Produzione Primaria” Department, Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna “Bruno Ubertini” (IZSLER), Via A. Bianchi 9, 25124 Brescia, Italy (F.P.)
| | - Paolo Daminelli
- National Reference Center for Bovine Milk Quality, Via A. Bianchi 9, 25124 Brescia, Italy;
| |
Collapse
|
2
|
Lutin J, Dufrene F, Guyot P, Palme R, Achilleos C, Bouton Y, Buchin S. Microbial composition and viability of natural whey starters used in PDO Comté cheese-making. Food Microbiol 2024; 121:104521. [PMID: 38637083 DOI: 10.1016/j.fm.2024.104521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/14/2024] [Accepted: 03/16/2024] [Indexed: 04/20/2024]
Abstract
Natural whey starters (NWS) are cultures with undefined multiple-strains species commonly used to speed up the fermentation process of cheeses. The aim of this study was to explore the diversity and the viability of Comté cheese NWS microbiota. Culture-dependent methods, i.e. plate counting and genotypic characterization, and culture-independent methods, i.e. qPCR, viability-qPCR, fluorescence microscopy and DNA metabarcoding, were combined to analyze thirty-six NWS collected in six Comté cheese factories at two seasons. Our results highlighted that NWS were dominated by Streptococcus thermophilus (ST) and thermophilic lactobacilli. These species showed a diversity of strains based on Rep-PCR. The dominance of Lactobacillus helveticus (LH) over Lactobacillus delbrueckii (LD) varied depending on the factory and the season. This highlighted two types of NWS: the type-ST/LD (LD > LH) and the type-ST/LH (LD < LH). The microbial composition varied depending on cheese factory. One factory was distinguished by its level of culturable microbial groups (ST, enterococci and yeast) and its fungi diversity. The approaches used to estimate the viability showed that most NWS cells were viable. Further investigations are needed to understand the microbial diversity of these NWS.
Collapse
Affiliation(s)
- Jade Lutin
- Comité Interprofessionnel de Gestion du Comté - Unité R&D, Bât. INRAE, F-39800, Poligny, France
| | - Franck Dufrene
- INRAE, Institut Agro, Université de Bourgogne, UMR PAM, F-39800, Poligny, France
| | - Philippe Guyot
- Comité Interprofessionnel de Gestion du Comté - Unité R&D, Bât. INRAE, F-39800, Poligny, France
| | - Romain Palme
- INRAE, Institut Agro, Université de Bourgogne, UMR PAM, F-39800, Poligny, France
| | - Christine Achilleos
- INRAE, Institut Agro, Université de Bourgogne, UMR PAM, F-39800, Poligny, France
| | - Yvette Bouton
- Comité Interprofessionnel de Gestion du Comté - Unité R&D, Bât. INRAE, F-39800, Poligny, France.
| | - Solange Buchin
- INRAE, Institut Agro, Université de Bourgogne, UMR PAM, F-39800, Poligny, France
| |
Collapse
|
3
|
Pellegrino L, Rosi V, Sindaco M, D’Incecco P. Proteomics Parameters for Assessing Authenticity of Grated Grana Padano PDO Cheese: Results from a Three-Year Survey. Foods 2024; 13:355. [PMID: 38338491 PMCID: PMC10855795 DOI: 10.3390/foods13030355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/11/2024] [Accepted: 01/18/2024] [Indexed: 02/12/2024] Open
Abstract
Assessing the authenticity of PDO cheeses is an important task because it allows consumer expectations to be fulfilled and guarantees fair competition for manufacturers. A 3-year survey was carried out, analyzing 271 samples of grated Grana Padano (GP) PDO cheese collected on the European market. Previously developed analytical methods based on proteomics approaches were adopted to evaluate the compliance of market samples with selected legal requirements provided by the specification for this cheese. Proteolysis follows highly repeatable pathways in GP cheese due to the usage of raw milk, natural whey starter, and consistent manufacturing and ripening conditions. From selected casein breakdown products, it is possible to calculate the actual cheese age (should be >9 months) and detect the presence of excess rind (should be <18%). Furthermore, due to the characteristic pattern of free amino acids established for GP, distinguishing it from closely related cheese varieties is feasible. Cheese age ranged from 9 to 25 months and was correctly claimed on the label. Based on the amino acid pattern, three samples probably contained defective cheese and there was only one imitation cheese. Few samples (9%) were proven to contain some excess rind. Overall, this survey highlighted that the adopted control parameters can assure the quality of grated GP.
Collapse
Affiliation(s)
| | | | | | - Paolo D’Incecco
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Via G. Celoria 2, 20133 Milan, Italy; (L.P.); (V.R.); (M.S.)
| |
Collapse
|
4
|
Rodríguez J, Vázquez L, Flórez AB, Mayo B. Epicoccum sp. as the causative agent of a reddish-brown spot defect on the surface of a hard cheese made of raw ewe milk. Int J Food Microbiol 2023; 406:110401. [PMID: 37722266 DOI: 10.1016/j.ijfoodmicro.2023.110401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/29/2023] [Accepted: 09/13/2023] [Indexed: 09/20/2023]
Abstract
Colour defects can affect the appearance of cheese, its flavour, the safety of its consumption, and the price it can demand. This work reports the identification of five fungal isolates from a dairy plant where the surface of most cheeses was affected by patent, reddish-to-brown stains. One of these isolates was obtained from cheese, two from brine, and two from a bulk tank containing ewe milk. Molecular identification by partial amplification, sequencing, and database comparison of the concatenated sequence of the genes coding for the largest subunit of RNA polymerase II (RPB2), β-tubulin (β-TUB), and the large subunit of the rRNA molecule (LSU), plus the internal transcribed sequence (ITS) regions, assigned the isolates to Epicoccum layuense, Epicoccum italicum, and Epicoccum mezzettii. Features of the growth of these different species on different agar-based media, and of the morphology of their conidia following sporulation, are also reported. The strain isolated from cheese, E. layuense IPLA 35011, was able to recreate the reddish-brown stains on slices of Gouda-like cheese, which linked the fungus with the colour defect. In addition, two other strains, E. italicum IPLA 35013 from brine and E. italicum IPLA 35014 from milk, also produced stains on cheese slices. Epicoccum species are widely recognized as plant pathogens but have seldom been reported in the dairy setting, and never as human or animal pathogens.
Collapse
Affiliation(s)
- Javier Rodríguez
- Departamento de Microbiología y Bioquímica, Instituto de Productos Lácteos de Asturias (IPLA), Consejo Superior de Investigaciones Científicas (CSIC), Paseo Río Linares s/n, 33300 Villaviciosa, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Avenida de Roma s/n, 33011 Oviedo, Spain
| | - Lucía Vázquez
- Departamento de Microbiología y Bioquímica, Instituto de Productos Lácteos de Asturias (IPLA), Consejo Superior de Investigaciones Científicas (CSIC), Paseo Río Linares s/n, 33300 Villaviciosa, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Avenida de Roma s/n, 33011 Oviedo, Spain
| | - Ana Belén Flórez
- Departamento de Microbiología y Bioquímica, Instituto de Productos Lácteos de Asturias (IPLA), Consejo Superior de Investigaciones Científicas (CSIC), Paseo Río Linares s/n, 33300 Villaviciosa, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Avenida de Roma s/n, 33011 Oviedo, Spain
| | - Baltasar Mayo
- Departamento de Microbiología y Bioquímica, Instituto de Productos Lácteos de Asturias (IPLA), Consejo Superior de Investigaciones Científicas (CSIC), Paseo Río Linares s/n, 33300 Villaviciosa, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Avenida de Roma s/n, 33011 Oviedo, Spain.
| |
Collapse
|
5
|
Galimberti S, Rocchetti G, Di Rico F, Rossetti C, Fontana A, Lucini L, Callegari ML. Untargeted metabolomics provide new insights into the implication of Lactobacillus helveticus strains isolated from natural whey starter in methylglyoxal-mediated browning. Food Res Int 2023; 174:113644. [PMID: 37986486 DOI: 10.1016/j.foodres.2023.113644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/22/2023]
Abstract
Hard cheeses may occasionally show a brown discolouration during ripening due to multifactorial phenomena that involve bacteria and give rise to pyrazines arising from methylglyoxal. The present work aimed at developing a novel approach to investigate the role of natural starters in browning. To this object, 11 strains of L. helveticus were incubated in a medium containing 10 % rennet casein dissolved in whey, and then growth was monitored by measuring pH and number of genomes/mL. Browning was assessed through CIELab analysis, methylglyoxal production was determined by targeted mass spectrometry, and untargeted metabolomics was used to extrapolate marker compounds associated with browning discoloration. The medium allowed the growth of all the strains tested and differences in colour were observed, especially for strain A7 (ΔE* value 15.92 ± 0.27). Noteworthy, this strain was also the higher producer of methylglyoxal (2.44 µg/mL). Metabolomics highlighted pyrazines and β-carboline compounds as markers of browning at 42 °C and 16 °C, respectively. Moreover, multivariate statistics pointed out differences in free amino acids and oligopeptides linked to proteolysis, while 1,2-propanediol and S-Lactoylglutathione suggested specific detoxification route in methylglyoxal-producing strains. Our model allowed detecting differences in browning amid strains, paving the way towards the study of individual L. helveticus strains to identify the variables leading to discoloration or to study the interaction between different strains in natural whey starters.
Collapse
Affiliation(s)
- Sofia Galimberti
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Bissolati 74, 26100 Cremona, Italy
| | - Gabriele Rocchetti
- Department of Animal Science, Food and Nutrition, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Francesca Di Rico
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Chiara Rossetti
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Bissolati 74, 26100 Cremona, Italy
| | - Alessandra Fontana
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Bissolati 74, 26100 Cremona, Italy
| | - Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Maria Luisa Callegari
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Bissolati 74, 26100 Cremona, Italy.
| |
Collapse
|
6
|
Bettera L, Levante A, Bancalari E, Bottari B, Cirlini M, Neviani E, Gatti M. Lacticaseibacillus Strains Isolated from Raw Milk: Screening Strategy for Their Qualification as Adjunct Culture in Cheesemaking. Foods 2023; 12:3949. [PMID: 37959068 PMCID: PMC10648420 DOI: 10.3390/foods12213949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
The microbial ecology fundamentals of raw milk and long-ripened cheeses consist of a complex interaction between starter lactic acid bacteria (SLAB) and non-starter LAB (NSLAB). Although NSLAB aromatic properties are paramount, other phenotypic traits need to be considered for their use as adjunct cultures, such as the capability to endure technological parameters encountered during cheesemaking. The present study focused on the isolation and characterization of NSLAB from spontaneously fermented raw cow's milk coming from 20 dairies that produce Grana Padano PDO cheese. From 122 isolates, the screening process selected the 10 most diverse strains belonging to Lacticaseibacillus spp. to be phenotypically characterized. The strains were tested for their growth performance in milk in combination with the application of technological stresses, for their ability to produce volatile compounds after their growth in milk, and for their ability to use different nutrient sources and resist chemicals. The complex characterization qualified the strains 5959_Lbparacasei and 5296_Lbparacasei as the best candidates to be used as adjunct strains in the production of raw milk and long-ripened cheeses, provided that antibiotic resistance is measured before their employment. Other strains with interesting aromatic capabilities but lower heat resistance were 5293_Lbparacasei, 5649_Lbparacasei and 5780_Lbparacasei, which could be candidates as adjunct strains for uncooked cheese production.
Collapse
Affiliation(s)
| | - Alessia Levante
- Department of Food and Drug, University of Parma, 43124 Parma, Italy; (L.B.); (E.B.); (B.B.); (M.C.); (E.N.); (M.G.)
| | | | | | | | | | | |
Collapse
|
7
|
D'Incecco P, Bettera L, Bancalari E, Rosi V, Sindaco M, Gobbi S, Candotti P, Nazzicari N, Limbo S, Gatti M, Pellegrino L. High-speed cold centrifugation of milk modifies the microbiota, the ripening process and the sensory characteristics of raw-milk hard cheeses. Food Res Int 2023; 172:113102. [PMID: 37689872 DOI: 10.1016/j.foodres.2023.113102] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/01/2023] [Accepted: 06/09/2023] [Indexed: 09/11/2023]
Abstract
The microbial population of raw milk plays a crucial role in the development of distinctive traits of raw-milk cheeses particularly appreciated by consumers. It was previously demonstrated that the microbial population of raw milk is modified by a high-speed centrifugation (also called bactofugation) conducted at 39 °C. The aim of the present study was to evaluate the effects of this process, performed once or twice, on the microbial, compositional, biochemical, and sensory characteristics of the derived hard cheeses. Experimental and control cheesemaking were conducted in parallel at a cheese factory during a 13-month period. Cheeses were analysed after 9, 15 and 20 months of ripening for microbial count, composition, proteolysis extent, volatile compounds, and sensory profile. Results evidenced that experimental cheeses were characterized by lower numbers of viable lactobacilli respect to control. Experimental cheeses also showed differences in the progress of primary and secondary proteolysis which, in turn, caused different patterns of free amino acids at all ripening times. Experimental cheeses had significantly lower content of esters and were differentiated from control for some traits by assessors. In conclusion, use of high-speed centrifugation of milk shall be discouraged if characteristic traits of raw-milk cheeses, particularly PDO cheeses, want to be retained.
Collapse
Affiliation(s)
- Paolo D'Incecco
- Department of Food, Environmental and Nutritional Sciences, University of Milan, 20133 Milan, Italy.
| | - Luca Bettera
- Department of Food and Drug, University of Parma, Parma 43124, Italy
| | - Elena Bancalari
- Department of Food and Drug, University of Parma, Parma 43124, Italy
| | - Veronica Rosi
- Department of Food, Environmental and Nutritional Sciences, University of Milan, 20133 Milan, Italy
| | - Marta Sindaco
- Department of Food, Environmental and Nutritional Sciences, University of Milan, 20133 Milan, Italy
| | - Serena Gobbi
- Department of Food, Environmental and Nutritional Sciences, University of Milan, 20133 Milan, Italy
| | - Paolo Candotti
- National Reference Centre for Animal Welfare, IZSLER, 25124 Brescia, Italy
| | - Nelson Nazzicari
- Council for Agricultural Research and Economics (CREA), Research Centre for Fodder Crops and Dairy Productions, 26900 Lodi, Italy
| | - Sara Limbo
- Department of Food, Environmental and Nutritional Sciences, University of Milan, 20133 Milan, Italy
| | - Monica Gatti
- Department of Food and Drug, University of Parma, Parma 43124, Italy
| | - Luisa Pellegrino
- Department of Food, Environmental and Nutritional Sciences, University of Milan, 20133 Milan, Italy
| |
Collapse
|
8
|
Carminati D, Bonvini B, Francolino S, Ghiglietti R, Locci F, Tidona F, Mariut M, Abeni F, Zago M, Giraffa G. Low-Level Clostridial Spores' Milk to Limit the Onset of Late Blowing Defect in Lysozyme-Free, Grana-Type Cheese. Foods 2023; 12:foods12091880. [PMID: 37174418 PMCID: PMC10177814 DOI: 10.3390/foods12091880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/26/2023] [Accepted: 04/30/2023] [Indexed: 05/15/2023] Open
Abstract
The growth of clostridial spores during ripening leads to late blowing (LB), which is the main cause of spoilage in Grana Padano Protected Designation of Origin (PDO) cheese and other hard, long-ripened cheeses such as Provolone, Comté, and similar cheeses. This study aimed to verify the cause-effect relationship between the level of clostridial butyric spores (BCS) in milk and the onset of the LB defect. To this end, experimental Grana-type cheeses were produced without lysozyme, using bulk milk with different average BCS content. The vat milk from the so-called "virtuous" farms (L1) contained average levels of BCS of 1.93 ± 0.61 log most probable number (MPN) L-1, while the vat milk from farms with the highest load of spores (L2), were in the order of 2.99 ± 0.69 log MPN L-1. Cheeses after seven months of ripening evidenced a strong connection between BCS level in vat milk and the occurrence of LB defect. In L2 cheeses, which showed an average BCS content of 3.53 ± 1.44 log MPN g-1 (range 1.36-5.04 log MPN g-1), significantly higher than that found in L1 cheeses (p < 0.01), the defect of LB was always present, with Clostridium tyrobutyricum as the only clostridial species identified by species-specific PCR from MPN-positive samples. The L1 cheeses produced in the cold season (C-L1) were free of defects whereas those produced in the warm season (W-L1) showed textural defects, such as slits and cracks, rather than irregular eyes. A further analysis of the data, considering the subset of the cheesemaking trials (W-L1 and W-L2), carried out in the warm season, confirmed the presence of a climate effect that, often in addition to the BCS load in the respective bulk milks (L1 vs. L2), may contribute to explain the significant differences in the chemical composition and some technological parameters between the two series of cheeses. Metagenomic analysis showed that it is not the overall structure of the microbial community that differentiates L1 from L2 cheeses but rather the relative distribution of the species between them. The results of our trials on experimental cheeses suggest that a low-level BCS in vat milk (<200 L-1) could prevent, or limit, the onset of LB in Grana-type and similar cheeses produced without lysozyme.
Collapse
Affiliation(s)
- Domenico Carminati
- Council for Agricultural Research and Economics, Research Centre for Animal Production and Aquaculture (CREA-ZA), Via Lombardo 11, 26900 Lodi, Italy
| | - Barbara Bonvini
- Council for Agricultural Research and Economics, Research Centre for Animal Production and Aquaculture (CREA-ZA), Via Lombardo 11, 26900 Lodi, Italy
| | - Salvatore Francolino
- Council for Agricultural Research and Economics, Research Centre for Animal Production and Aquaculture (CREA-ZA), Via Lombardo 11, 26900 Lodi, Italy
| | - Roberta Ghiglietti
- Council for Agricultural Research and Economics, Research Centre for Animal Production and Aquaculture (CREA-ZA), Via Lombardo 11, 26900 Lodi, Italy
| | - Francesco Locci
- Council for Agricultural Research and Economics, Research Centre for Animal Production and Aquaculture (CREA-ZA), Via Lombardo 11, 26900 Lodi, Italy
| | - Flavio Tidona
- Council for Agricultural Research and Economics, Research Centre for Animal Production and Aquaculture (CREA-ZA), Via Lombardo 11, 26900 Lodi, Italy
| | - Monica Mariut
- Council for Agricultural Research and Economics, Research Centre for Animal Production and Aquaculture (CREA-ZA), Via Lombardo 11, 26900 Lodi, Italy
| | - Fabio Abeni
- Council for Agricultural Research and Economics, Research Centre for Animal Production and Aquaculture (CREA-ZA), Via Lombardo 11, 26900 Lodi, Italy
| | - Miriam Zago
- Council for Agricultural Research and Economics, Research Centre for Animal Production and Aquaculture (CREA-ZA), Via Lombardo 11, 26900 Lodi, Italy
| | - Giorgio Giraffa
- Council for Agricultural Research and Economics, Research Centre for Animal Production and Aquaculture (CREA-ZA), Via Lombardo 11, 26900 Lodi, Italy
| |
Collapse
|
9
|
Ricci M, Gasperi F, Betta E, Menghi L, Endrizzi I, Cliceri D, Franceschi P, Aprea E. Multivariate data analysis strategy to monitor Trentingrana cheese real-scale production through volatile organic compounds profiling. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
10
|
Sola L, Quadu E, Bortolazzo E, Bertoldi L, Randazzo CL, Pizzamiglio V, Solieri L. Insights on the bacterial composition of Parmigiano Reggiano Natural Whey Starter by a culture-dependent and 16S rRNA metabarcoding portrait. Sci Rep 2022; 12:17322. [PMID: 36243881 PMCID: PMC9569347 DOI: 10.1038/s41598-022-22207-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/11/2022] [Indexed: 01/10/2023] Open
Abstract
Natural whey starters (NWS) are undefined bacterial communities produced daily from whey of the previous cheese-making round, by application of high temperature. As a result, in any dairy plant, NWS are continuously evolving, undefined mixtures of several strains and/or species of lactic acid bacteria, whose composition and performance strongly depend on the selective pressure acting during incubation. While NWS is critical to assure consistency to cheese-making process, little is known about the composition, functional features, and plant-to-plant fluctuations. Here, we integrated 16S rRNA metabarcoding and culture-dependent methods to profile bacterial communities of 10 NWS sampled in the production area of Parmigiano Reggiano cheese. 16S rRNA metabarcoding analysis revealed two main NWS community types, namely NWS type-H and NWS type-D. Lactobacillus helveticus was more abundant in NWS type-H, whilst Lactobacillus delbrueckii/St. thermophilus in NWS type-D, respectively. Based on the prediction of metagenome functions, NWS type-H samples were enriched in functional pathways related to galactose catabolism and purine metabolism, while NWS type-D in pathways related to aromatic and branched chain amino acid biosynthesis, which are flavor compound precursors. Culture-dependent approaches revealed low cultivability of individual colonies as axenic cultures and high genetic diversity in the pool of cultivable survivors. Co-culturing experiments showed that fermentative performance decreases by reducing the bacterial complexity of inoculum, suggesting that biotic interactions and cross-feeding relationships could take place in NWS communities, assuring phenotypic robustness. Even though our data cannot directly predict these ecological interactions, this study provides the basis for experiments targeted at understanding how selective regime affects composition, bacterial interaction, and fermentative performance in NWS.
Collapse
Affiliation(s)
- Laura Sola
- grid.7548.e0000000121697570Department of Life Sciences, University of Modena and Reggio Emilia, 42122 Reggio Emilia, Italy
| | - Emanuele Quadu
- grid.7548.e0000000121697570Department of Life Sciences, University of Modena and Reggio Emilia, 42122 Reggio Emilia, Italy
| | - Elena Bortolazzo
- grid.423913.eCentro Ricerche Produzioni Animali, 42121 Reggio Emilia, Italy
| | | | - Cinzia L. Randazzo
- grid.8158.40000 0004 1757 1969Department of Agriculture, Food and Environment, University of Catania, 95123 Catania, Italy ,ProBioEtna Srl, 95123 Catania, Italy
| | - Valentina Pizzamiglio
- grid.433295.aConsorzio del Formaggio Parmigiano Reggiano, 42124 Reggio Emilia, Italy
| | - Lisa Solieri
- grid.7548.e0000000121697570Department of Life Sciences, University of Modena and Reggio Emilia, 42122 Reggio Emilia, Italy ,NBFC, National Biodiversity Future Center, 90133 Palermo, Italy
| |
Collapse
|
11
|
Raw Milk for Provolone Valpadana PDO Cheese: Impact of Modified Cold Storage Conditions on the Composition of the Bacterial Biota. DAIRY 2022. [DOI: 10.3390/dairy3040048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The raw milk for production of long-ripened, spicy type, Provolone Valpadana (PV) PDO cheese must be stored, refrigerated, and processed within 60 h from the first milking, according to European and Consortium regulations. Low-temperature storage conditions preserve the hygienic quality, but also reduce the diversity and content of dairy microbiota, which is important to define the characteristics and quality of raw milk cheeses. Eleven bulk, raw milk samples were stored, at laboratory level, under two different time/temperature conditions (i.e., 10 °C or 12 °C for 15 h, then cooled to 4 °C for 45 h). The count of different bacterial groups and the diversity of bacterial communities were determined before and after storage by culture-dependent and DNA metabarcoding methods, respectively. The two-step cold storage conditions increased the mesophilic, psychrotrophic, lipolytic, and proteolytic bacterial load, without affecting the hygienic quality of milk. Among the 66 dominant and 161 subdominant taxa retrieved by DNA metabarcoding, Acinetobacter, Pseudomonas, and the lactic acid bacteria belonging to the genera Lactococcus and Streptococcus were present in almost all the raw milk samples, and their relative abundance was positively related with the total bacterial count. The storage conditions tested could be considered for eventual application in long-ripened PV cheese production to rationalize storage, transfer, and processing of raw milk.
Collapse
|
12
|
Morandi S, Silvetti T, Brasca M. Content and spatial distribution of dairy-related Clostridium spores in Grana Padano cheese during the ripening period. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
13
|
Schirone M, Visciano P, Conte F, Paparella A. Formation of biogenic amines in the cheese production chain: favouring and hindering factors. Int Dairy J 2022. [DOI: 10.1016/j.idairyj.2022.105420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|