1
|
Xiang P, Marat T, Huang J, Cheng B, Liu J, Wang X, Wu L, Tan M, Zhu Q, Lin J. Response of photosynthetic capacity to ecological factors and its relationship with EGCG biosynthesis of tea plant (Camellia sinensis). BMC PLANT BIOLOGY 2025; 25:199. [PMID: 39953393 PMCID: PMC11827184 DOI: 10.1186/s12870-025-06106-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 01/13/2025] [Indexed: 02/17/2025]
Abstract
BACKGROUND Epigallocatechin gallate (EGCG) imparts unique health benefits and flavour to tea. Photosynthesis plays a crucial role in modulating secondary metabolite production in plants, and this study investigated its impact on the biosynthesis of EGCG in tea plants under different ecological conditions. RESULTS Enhanced photosynthetic activity and the increased EGCG content, total esterified catechins (TEC), total catechins (TC) responded synchronously to changes in ecological factors. The photosynthetic capacity of tea plants and the EGCG content fit surface model equations (Extreme 2D and Polynomial 2D) and multiple regression equations (R2 > 70%). Additionally, logistic regression and ROC curves revealed that photosynthetic capacity was related to EGCG accumulation patterns in response to ecological variations. Upon perceiving ecological changes, the response of photosynthesis-related genes (CspsaA from photosystem I, CspsbB, CspsbC from photosystem II, and CsLHCB3 from the antenna protein pathway) was associated to carbon cycle-related genes (CsALDO, CsACOX, CsICDH, Csrbcs), which mediated the expression of CsPAL in the phenylalanine pathway; CsaroDE in the shikimate pathway; and CsCHS, CsF3H, CsF3'H, and CsANS in the flavonoid pathway. Eventually, this influenced the accumulation of EGCG and its precursors (gallic acid and epigallocatechin) in tea plants. CONCLUSIONS This study reveals the effects of photosynthesis on EGCG biosynthesis in response to ecological factors, providing insights for optimizing tea cultivation and quality.
Collapse
Affiliation(s)
- Ping Xiang
- College of Life and Environmental Science, Hunan University of Arts and Science, Changde, 415000, China
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Tukhvatshin Marat
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jiaxin Huang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Bosi Cheng
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jianghong Liu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xingjian Wang
- Institute of Photobiological Industry, Fujian Sanan Sino-Science Photobiotech Co., Ltd, Xiamen, 361008, China
| | - Liangyu Wu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Meng Tan
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Qiufang Zhu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jinke Lin
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
2
|
Zhu J, Cheng W, He TT, Hou BL, Lei LY, Wang Z, Liang YN. Exploring the Anti-Inflammatory Effect of Tryptanthrin by Regulating TLR4/MyD88/ROS/NF-κB, JAK/STAT3, and Keap1/Nrf2 Signaling Pathways. ACS OMEGA 2024; 9:30904-30918. [PMID: 39035974 PMCID: PMC11256115 DOI: 10.1021/acsomega.4c03795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/23/2024]
Abstract
Tryptanthrin (TRYP) is the main active ingredient in Indigo Naturalis. Studies have shown that TRYP had excellent anti-inflammatory activity, but its specific mechanism has been unclear. In this work, the differentially expressed proteins resulting from TRYP intervention in LPS-stimulated RAW264.7 cells were obtained based on tandem mass tag proteomics technology. The anti-inflammatory mechanism of TRYP was further validated by a combination of experiments using the LPS-induced RAW264.7 cell model in vitro and the DSS-induced UC mouse model (free drinking 2.5% DSS) in vivo. The results demonstrated that TRYP could inhibit levels of NO, IL-6, and TNF-α in LPS-induced RAW264.7 cells. Twelve differential proteins were screened out. And the results indicated that TRYP could inhibit upregulated levels of gp91phox, p22phox, FcεRIγ, IKKα/β, and p-IκBα and reduce ROS levels in vitro. Besides, after TRYP treatment, the health conditions of colitis mice were all improved. Furthermore, TRYP inhibited the activation of JAK/STAT3, nuclear translocation of NF-κB p65, and promoted the nuclear expression of Nrf2 in vitro and in vivo. This work preliminarily indicated that TRYP might suppress the TLR4/MyD88/ROS/NF-κB and JAK/STAT3 signaling pathways to exert anti-inflammatory effects. Additionally, TRYP could achieve antioxidant effects by regulating the Keap1/Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Jie Zhu
- Co-construction Collaborative Innovation
Center for Chinese Medicine Resources Industrialization by Shaanxi
& Education Ministry, State Key Laboratory of Research & Development
of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xianyang 712083, China
| | - Wen Cheng
- Co-construction Collaborative Innovation
Center for Chinese Medicine Resources Industrialization by Shaanxi
& Education Ministry, State Key Laboratory of Research & Development
of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xianyang 712083, China
| | - Tian-Tian He
- Co-construction Collaborative Innovation
Center for Chinese Medicine Resources Industrialization by Shaanxi
& Education Ministry, State Key Laboratory of Research & Development
of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xianyang 712083, China
| | - Bao-Long Hou
- Co-construction Collaborative Innovation
Center for Chinese Medicine Resources Industrialization by Shaanxi
& Education Ministry, State Key Laboratory of Research & Development
of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xianyang 712083, China
| | - Li-Yan Lei
- Co-construction Collaborative Innovation
Center for Chinese Medicine Resources Industrialization by Shaanxi
& Education Ministry, State Key Laboratory of Research & Development
of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xianyang 712083, China
| | - Zheng Wang
- Co-construction Collaborative Innovation
Center for Chinese Medicine Resources Industrialization by Shaanxi
& Education Ministry, State Key Laboratory of Research & Development
of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xianyang 712083, China
| | - Yan-Ni Liang
- Co-construction Collaborative Innovation
Center for Chinese Medicine Resources Industrialization by Shaanxi
& Education Ministry, State Key Laboratory of Research & Development
of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xianyang 712083, China
| |
Collapse
|
3
|
Long P, Su S, Han Z, Granato D, Hu W, Ke J, Zhang L. The effects of tea plant age on the color, taste, and chemical characteristics of Yunnan Congou black tea by multi-spectral omics insight. Food Chem X 2024; 21:101190. [PMID: 38357378 PMCID: PMC10864201 DOI: 10.1016/j.fochx.2024.101190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/25/2024] [Accepted: 02/02/2024] [Indexed: 02/16/2024] Open
Abstract
The present study comprehensively used integrated multi-spectral omics combined with sensory evaluation analysis to investigate the quality of three types of Yunnan Congou black teas from different tree ages (decades, DB; hundreds, HB; a thousand years, TB). TB infusion presented the highest scores of sweetness and umami, higher brightness, and yellow hue. Eighty-four marker metabolites were identified, including Amadori rearrangement products, catechin oxidation products, flavonoid glycosides, and organic acids, which are simultaneously related to tea infusions' color and taste. Moreover, the content of some characteristic flavonoid glycosides and organic acids was determined. Our finding implied trans-4-O-p-coumaroylquinic acid and quercetin 3-O-rutinoside contributed to bitterness and astringency, while dehydro theanine-glucose Amadori product and xylopyranosyl-glucopyranose resulted in umami and sweetness. These results provided quantitative and qualitative information for deciphering differences among black teas with different tea plant ages, conducing to the further utilization of ancient tea plants in Southwest China.
Collapse
Affiliation(s)
- Piaopiao Long
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Shengxiao Su
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Zisheng Han
- Department of Food Science, Rutgers University, New Brunswick, NJ 08901, USA
| | - Daniel Granato
- Bioactivity and Applications Laboratory, Department of Biological Sciences, University of Limerick, Limerick V94 T9PX, Ireland
| | - Wei Hu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Jiaping Ke
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Liang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| |
Collapse
|
4
|
Qiu Z, Liao J, Chen J, Chen P, Sun B, Li A, Pan Y, Liu H, Zheng P, Liu S. The Cultivar Effect on the Taste and Aroma Substances of Hakka Stir-Fried Green Tea from Guangdong. Foods 2023; 12:2067. [PMID: 37238885 PMCID: PMC10217579 DOI: 10.3390/foods12102067] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
The flavor and quality of tea largely depends on the cultivar from which it is processed; however, the cultivar effect on the taste and aroma characteristics of Hakka stir-fried green tea (HSGT) has received little attention. High-performance liquid chromatography (HPLC), gas chromatography-mass spectrometry (GC-MS), and sensory evaluations were used to detect and predict the essential taste and aroma-contributing substances of HSGTs made from Huangdan (HD), Meizhan (MZ) and Qingliang Mountain (QL) cultivars. Orthogonal partial least squares data analysis (OPLS-DA) ranked four substances that putatively distinguished the tastes of the HSGTs, epigallocatechin gallate (EGCG) > theanine > epigallocatechin (EGC) > epicatechin gallate (ECG). Ten substances with variable importance in projections (VIPs) ≥ 1 and odor activation values (OAVs) ≥ 1 contributed to their overall aromas, with geranylacetone having the most significant effect on HD (OAV 1841), MZ (OAV 4402), and QL (OAV 1211). Additionally, sensory evaluations found that HD was relatively equivalent to QL in quality, and both were superior to MZ. HD had a distinct floral aroma, MZ had a distinct fried rice aroma, and QL had a balance of fried rice and fresh aromas. The results provide a theoretical framework for evaluating the cultivar effect on the quality of HSGT and put forward ideas for future HSGT cultivar development.
Collapse
Affiliation(s)
- Zihao Qiu
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (Z.Q.); (J.L.); (J.C.); (P.C.); (B.S.); (H.L.); (P.Z.)
| | - Jinmei Liao
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (Z.Q.); (J.L.); (J.C.); (P.C.); (B.S.); (H.L.); (P.Z.)
| | - Jiahao Chen
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (Z.Q.); (J.L.); (J.C.); (P.C.); (B.S.); (H.L.); (P.Z.)
| | - Peifen Chen
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (Z.Q.); (J.L.); (J.C.); (P.C.); (B.S.); (H.L.); (P.Z.)
| | - Binmei Sun
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (Z.Q.); (J.L.); (J.C.); (P.C.); (B.S.); (H.L.); (P.Z.)
| | - Ansheng Li
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (Z.Q.); (J.L.); (J.C.); (P.C.); (B.S.); (H.L.); (P.Z.)
| | - Yiyu Pan
- Meizhou Runqi Culture and Technology Development Co., Ltd., Meizhou 514000, China;
| | - Hongmei Liu
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (Z.Q.); (J.L.); (J.C.); (P.C.); (B.S.); (H.L.); (P.Z.)
| | - Peng Zheng
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (Z.Q.); (J.L.); (J.C.); (P.C.); (B.S.); (H.L.); (P.Z.)
| | - Shaoqun Liu
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (Z.Q.); (J.L.); (J.C.); (P.C.); (B.S.); (H.L.); (P.Z.)
| |
Collapse
|
5
|
Xiao H, Yong J, Xie Y, Zhou H. The molecular mechanisms of quality difference for Alpine Qingming green tea and Guyu green tea by integrating multi-omics. Front Nutr 2023; 9:1079325. [PMID: 36687681 PMCID: PMC9854344 DOI: 10.3389/fnut.2022.1079325] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/08/2022] [Indexed: 01/07/2023] Open
Abstract
Introduction Harvest time represents one of the crucial factors concerning the quality of alpine green tea. At present, the mechanisms of the tea quality changing with harvest time have been unrevealed. Methods In the current study, fresh tea leaves (qmlc and gylc) and processed leaves (qmgc and gygc) picked during Qingming Festival and Guyu Festival were analyzed by means of sensory evaluation, metabolomics, transcriptomic analysis, and high-throughput sequencing, as well as their endophytic bacteria (qm16s and gy16s). Results The results indicated qmgc possessed higher sensory quality than gygc which reflected from higher relative contents of amino acids, and soluble sugars but lower relative contents of catechins, theaflavins, and flavonols. These differential metabolites created features of light green color, prominent freshness, sweet aftertaste, and mild bitterness for qmgc. Discussion Flavone and flavonol biosynthesis and phenylalanine metabolism were uncovered as the key pathways to differentiate the quality of qmgc and gygc. Endophytic bacteria in leaves further influence the quality by regulating the growth of tea trees and enhancing their disease resistance. Our findings threw some new clues on the tea leaves picking to pursue the balance when facing the conflicts of product quality and economic benefits.
Collapse
Affiliation(s)
- Hongshi Xiao
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China,Agricultural and Rural Bureau of Hefeng County, Hefeng, China
| | - Jie Yong
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Yijie Xie
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Haiyan Zhou
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China,*Correspondence: Haiyan Zhou,
| |
Collapse
|
6
|
Lan Y, Song Y, Guo Y, Qiao D, Cao Y, Xu H. DsLCYB Directionally Modulated β-Carotene of the Green Alga Dunaliella salina under Red Light Stress. J Microbiol Biotechnol 2022; 32:1622-1631. [PMID: 36384973 PMCID: PMC9843872 DOI: 10.4014/jmb.2208.08044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 11/18/2022]
Abstract
Carotenoids, which are natural pigments found abundantly in wide-ranging species, have diverse functions and high industrial potential. The carotenoid biosynthesis pathway is very complex and has multiple branches, while the accumulation of certain metabolites often affects other metabolites in this pathway. The DsLCYB gene that encodes lycopene cyclase was selected in this study to evaluate β-carotene production and the accumulation of β-carotene in the alga Dunaliella salina. Compared with the wild type, the transgenic algal species overexpressed the DsLCYB gene, resulting in a significant enhancement of the total carotenoid content, with the total amount reaching 8.46 mg/g for an increase of up to 1.26-fold. Interestingly, the production of α-carotene in the transformant was not significantly reduced. This result indicated that the regulation of DsLCYB on the metabolic flux distribution of carotenoid biosynthesis is directional. Moreover, the effects of different light-quality conditions on β-carotene production in D. salina strains were investigated. The results showed that the carotenoid components of β-carotene and β-cryptoxanthin were 1.8-fold and 1.23-fold higher than that in the wild type under red light stress, respectively. This suggests that the accumulation of β-carotene under red light conditions is potentially more profitable.
Collapse
Affiliation(s)
- Yanhong Lan
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610065, P.R. China
| | - Yao Song
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610065, P.R. China
| | - Yihan Guo
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610065, P.R. China
| | - Dairong Qiao
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610065, P.R. China
| | - Yi Cao
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610065, P.R. China,Corresponding authors Y. Cao Phone: +86-28-85469573 E-mail:
| | - Hui Xu
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610065, P.R. China,
H. Xu Phone: +86-28-85469573 E-mail:
| |
Collapse
|
7
|
Liu Y, Tian J, Liu B, Zhuo Z, Shi C, Xu R, Xu M, Liu B, Ye J, Sun L, Liao H. Effects of pruning on mineral nutrients and untargeted metabolites in fresh leaves of Camellia sinensis cv. Shuixian. FRONTIERS IN PLANT SCIENCE 2022; 13:1016511. [PMID: 36311102 PMCID: PMC9606708 DOI: 10.3389/fpls.2022.1016511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/28/2022] [Indexed: 05/27/2023]
Abstract
Pruning is an important strategy for increasing tea production. However, the effects of pruning on tea quality are not well understood. In this study, tea leaves were collected from Wuyi Mountain for both ionomic and metabolomic analyses. A total of 1962 and 1188 fresh tea leaves were respectively collected from pruned and unpruned tea plants sampled across 350 tea plantations. Ionomic profiles of fresh tea leaves varied significantly between pruned and unpruned sources. For tea plants, pruning was tied to decreases in the concentrations of mobile elements, such as nitrogen (N), phosphorus (P), potassium (K) and magnesium (Mg), and dramatic increases in the concentrations of the immobile ions calcium (Ca), aluminum (Al), manganese (Mn), boron (B) and cobalt (Co). Clustering and heatmap analysis showed that pruning also affected tea leaf metabolism. Among 85 metabolites that were significantly impacted by pruning, 30 were identified through random forest analysis as characteristic differential metabolites with a prediction rate of 86.21%. Redundancy analysis showed that pruning effects on mineral nutrient concentrations accounted for 25.54% of the variation in characteristic metabolites between treatments, with the highest contributions of 6.64% and 3.69% coming from Ca and Mg, respectively. In correlation network analysis, Ca and Mg both exhibited close, though opposing correlations with six key metabolites, including key quality indicators 1,3-dicaffeoylquinic acid and 2-O-caffeoyl arbutin. In summary, large scale sampling over hundreds of tea plantations demonstrated that pruning affects tea quality, mainly through influences on leaf mineral composition, with Ca and Mg playing large roles. These results may provide a solid scientific basis for improved management of high-quality tea plantations.
Collapse
Affiliation(s)
- Yang Liu
- Root Biology Center, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jing Tian
- Root Biology Center, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Bei Liu
- Root Biology Center, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zuopin Zhuo
- Root Biology Center, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chen Shi
- Root Biology Center, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ruineng Xu
- Root Biology Center, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
- Wuyi Mountain Tea Industry Research Institute, Wuyishan, China
| | - Maoxing Xu
- Wuyi Mountain Tea Industry Research Institute, Wuyishan, China
| | - Baoshun Liu
- Wuyi Mountain Tea Industry Research Institute, Wuyishan, China
| | - Jianghua Ye
- Wuyi Mountain Tea Industry Research Institute, Wuyishan, China
| | - Lili Sun
- Root Biology Center, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
- Wuyi Mountain Tea Industry Research Institute, Wuyishan, China
| | - Hong Liao
- Root Biology Center, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
- Wuyi Mountain Tea Industry Research Institute, Wuyishan, China
| |
Collapse
|
8
|
Li R, Liu K, Liang Z, Luo H, Wang T, An J, Wang Q, Li X, Guan Y, Xiao Y, Lv C, Zhao M. Unpruning improvement the quality of tea through increasing the levels of amino acids and reducing contents of flavonoids and caffeine. Front Nutr 2022; 9:1017693. [PMID: 36245481 PMCID: PMC9558131 DOI: 10.3389/fnut.2022.1017693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/15/2022] [Indexed: 11/13/2022] Open
Abstract
Tea tree [Camellia sinensis var. sinensis or assamica (L.) O. Kuntze], an important crop worldwide, is usually pruned to heights of 70 to 80 cm, forming pruned tea tree (PTT) plantations. Currently, PTTs are transformed into unpruned tea tree (UPTT) plantations in Yunnan, China. This has improved the quality of tea products, but the underlying reasons have not been evaluated scientifically. Here, 12 samples of sun-dried green teas were manufactured using fresh leaves from an UPTT and the corresponding PTT. Using sensory evaluation, it was found that the change reduced the bitterness and astringency, while increasing sweetness and umami. Using high performance liquid chromatography detection showed that the contents of free amino acids (theanine, histidine, isoleucine and phenylalanine) and catechin gallate increased significantly (P < 0.05), whereas the content of alanine decreased significantly (P < 0.05). A liquid chromatography–mass spectrometry-based metabolomics analysis showed that the transformation to UPTT significantly decreased the relative levels of the majority of flavonols and tannins (P < 0.05), as well as γ-aminobutyric acid, caffeine and catechin (epigallocatechin, catechin, epigallocatechin gallate, gallocatechin gallate), while it significantly increased the relative contents of catechins (gallocatechin, epicatechin, epicatechin gallate and catechin gallate), phenolic acids and some amino acids (serine, oxidized glutathione, histidine, aspartic acid, glutamine, lysine, tryptophan, tyramine, pipecolic acid, and theanine) (P < 0.05). In summary, after transforming to UPTT, levels of amino acids, such as theanine increased significantly (P < 0.05), which enhanced the umami and sweetness of tea infusions, while the flavonoids (such as kaempferol, myricetin and glycosylated quercetin), and caffeine contents decreased significantly (P < 0.05), resulting in a reduction in the bitterness and astringency of tea infusions and an increase in tea quality.
Collapse
Affiliation(s)
- Ruoyu Li
- College of Tea Science and College of Food Science and Technology and College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province and National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, China
| | - Kunyi Liu
- College of Tea Science and College of Food Science and Technology and College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province and National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, China
- College of Wuliangye Technology and Food Engineering, Yibin Vocational and Technical College, Yibin, China
| | - Zhengwei Liang
- College of Tea Science and College of Food Science and Technology and College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province and National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, China
| | - Hui Luo
- College of Tea Science and College of Food Science and Technology and College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province and National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, China
| | - Teng Wang
- College of Tea Science and College of Food Science and Technology and College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province and National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, China
| | - Jiangshan An
- College of Tea Science and College of Food Science and Technology and College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province and National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, China
| | - Qi Wang
- College of Tea Science and College of Food Science and Technology and College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province and National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, China
| | - Xuedan Li
- College of Tea Science and College of Food Science and Technology and College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Yanhui Guan
- College of Tea Science and College of Food Science and Technology and College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province and National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, China
| | - Yanqin Xiao
- College of Tea Science and College of Food Science and Technology and College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province and National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, China
| | - Caiyou Lv
- College of Tea Science and College of Food Science and Technology and College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
- *Correspondence: Caiyou Lv,
| | - Ming Zhao
- College of Tea Science and College of Food Science and Technology and College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province and National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, China
- Ming Zhao,
| |
Collapse
|