1
|
Chen H, Bai S, Yang B, Ren R, Tang Z, Zhang Z, Zeng Q. Inter- and intra-varietal clonal differences influence the aroma compound profiles of wines analyzed by GC-MS and GC-IMS. Food Chem X 2025; 25:102136. [PMID: 39850058 PMCID: PMC11754488 DOI: 10.1016/j.fochx.2024.102136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/17/2024] [Accepted: 12/26/2024] [Indexed: 01/25/2025] Open
Abstract
To investigate the impact of genetic factors on wine aroma, wines made from 22 clones of five grape varieties (Vitis vinifera L.) were used to analyze the volatile compounds by headspace solid phase microextraction gas chromatography mass spectrometer (HS-SPME-GC-MS) and headspace gas chromatography-ion mobility spectrometry (HS-GC-IMS). Results showed that 52 and 49 aroma compounds were identified from 22 clones of wines by two technologies, respectively. Esters were the most abundant compounds, followed by alcohols and aldehydes. The aroma profiles demonstrated significant varietal and clonal diversity, the clones with the highest aroma compound content were CH VCR6, PN VCR20, CS VCR11, ML VCR101, and CF 678. Partial least squares discriminant analysis (PLS-DA) identified decanoic acid, 1-heptanol, diethyl succinate, ethyl octanoate, and octanal as key biomarkers for distinguishing 22 clones of wines. Our results revealed that white wine CH VCR6 and red wine CS VCR11 possessed the most complex aromas. These findings address the research gap concerning the genetic determinants of wine aroma, highlighting the significance of grape variety and clone selection in developing wines with desirable sensory attributes.
Collapse
Affiliation(s)
- Huawei Chen
- College of Enology, Northwest A & F University, No. 22 Xinong Road, Yangling 712100, China
| | - Shijian Bai
- Xinjiang Uighur Autonomous Reg Grapes & Melons Res, Turpan 838000, China
| | - Bowei Yang
- College of Enology, Northwest A & F University, No. 22 Xinong Road, Yangling 712100, China
| | - Ruihua Ren
- College of Enology, Northwest A & F University, No. 22 Xinong Road, Yangling 712100, China
| | - Zizhu Tang
- College of Enology, Northwest A & F University, No. 22 Xinong Road, Yangling 712100, China
| | - Zhenwen Zhang
- College of Enology, Northwest A & F University, No. 22 Xinong Road, Yangling 712100, China
- Shaanxi Engineering Research Center for Viti-Viniculture, Yangling 712100, China
| | - Qingqing Zeng
- College of Enology, Northwest A & F University, No. 22 Xinong Road, Yangling 712100, China
- Shaanxi Engineering Research Center for Viti-Viniculture, Yangling 712100, China
| |
Collapse
|
2
|
Wang H, Wang X, Yan A, Liu Z, Ren J, Xu H, Sun L. Metabolomic and transcriptomic integrated analysis revealed the decrease of monoterpenes accumulation in table grapes during long time low temperature storage. Food Res Int 2023; 174:113601. [PMID: 37986463 DOI: 10.1016/j.foodres.2023.113601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/09/2023] [Accepted: 10/13/2023] [Indexed: 11/22/2023]
Abstract
Low temperature is the commonly used technique for maintaining the quality of table grapes during postharvest storage. However, this technique could strongly affect the aromatic flavor of fruit. Monoterpenes are the key compounds contributing to the Muscat aromas of grapes. The detailed information and molecular mechanisms underlying the changes in monoterpenes during postharvest low temperature storage have not been thoroughly characterized. In this study, the effects of low temperature storage on the free and bound monoterpene profiles in four cultivars of table grape were determined at both the transcriptomic and metabolomic levels. A total of 27 compounds in both free and bound forms were identified in the four cultivars and showed quantitative differences between the cultivars. Hierarchical cluster and principal component analysis indicated that the free and bound monoterpene profiles were remarkably affected by the low temperature storage. The monoterpenes in the same biosynthesis pathway were clustered together and showed similar evolution trends during low temperature storage. And the content of most of free monoterpenes underwent a rapid decline during low-temperature storage at a certain stage, but the time was different in 4 grape cultivars. Transcriptomic analysis revealed that the expression of DXS, HDR, GPPS and TPS genes involved in the monoterpene synthesis pathway were consistent with the changes in the accumulation of monoterpene compounds. While the expression of HMGS, HMGR genes in MVA pathway and branch genes GGPPS and FPPS were negatively correlated with the accumulation of monoterpenes. The findings provide new insights into the underlying mechanisms of the berry aroma flavor change during low temperature storage.
Collapse
Affiliation(s)
- Huiling Wang
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, PR China
| | - Xiaoyue Wang
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, PR China
| | - Ailing Yan
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing 100093, PR China
| | - Zhenhua Liu
- Beijing Engineering Research Center for Deciduous Fruit Trees, Beijing 100093, PR China
| | - Jiancheng Ren
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, PR China
| | - Haiying Xu
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, PR China; Beijing Engineering Research Center for Deciduous Fruit Trees, Beijing 100093, PR China.
| | - Lei Sun
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing 100093, PR China.
| |
Collapse
|
3
|
Zhou X, Liu S, Gao W, Hu B, Zhu B, Sun L. Monoterpenoids Evolution and MEP Pathway Gene Expression Profiles in Seven Table Grape Varieties. PLANTS 2022; 11:plants11162143. [PMID: 36015445 PMCID: PMC9413098 DOI: 10.3390/plants11162143] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 11/19/2022]
Abstract
This research investigated the evolution of both monoterpenoids and expression profiles of related biosynthesis genes in the MEP pathway in seven different table grape varieties from veraison to maturity stage in two seasons, and the correlation was further evaluated between monoterpenoid accumulation and expression of these genes studied in these varieties. Results showed that linalool, trans-furan linalool oxide, geraniol, and cis-furan linalool oxide were the main compounds in the five Muscat varieties two seasons. ‘Zaomeiguixiang’ had the highest contents of geraniol and β-Citronellol. ‘Xiangfei’ had the most abundant of linalool and cis-furan linalool oxide, whereas the neutral varieties of ‘Moldova’ and ‘Christmas Rose’ had the least amount. Monoterpenoid volatiles have been grouped in three evolutionary patterns in the berry development of these varieties. ‘Zaomeiguixiang’ and ‘Xiangfei’ had distinct different pattern of terpenoids evolution profiles. Pearson’s correlation analysis showed that in the MEP pathway, the first biosynthesis gene VvDXS3 was significantly correlated to the accumulation of monoterpenoids, and appeared to be an important candidate gene for synthesis of the monoterpenoids.
Collapse
Affiliation(s)
- Xiaomiao Zhou
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China
- Department of Food Science and Engineering, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
- Institute of Forestry and Pomology, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100093, China
| | - Songyu Liu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China
- Department of Food Science and Engineering, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
- Institute of Forestry and Pomology, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100093, China
| | - Wengping Gao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China
- Department of Food Science and Engineering, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Binfang Hu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China
- Department of Food Science and Engineering, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Baoqing Zhu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China
- Department of Food Science and Engineering, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
- Correspondence: (B.Z.); (L.S.)
| | - Lei Sun
- Institute of Forestry and Pomology, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100093, China
- Correspondence: (B.Z.); (L.S.)
| |
Collapse
|