1
|
Zahir A, Khan IA, Nasim M, Azizi MN, Azi F. Food process contaminants: formation, occurrence, risk assessment and mitigation strategies - a review. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2024; 41:1242-1274. [PMID: 39038046 DOI: 10.1080/19440049.2024.2381210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 07/10/2024] [Accepted: 07/14/2024] [Indexed: 07/24/2024]
Abstract
Thermal treatment of food can lead to the formation of potentially harmful chemicals, known as process contaminants. These are adventitious contaminants that are formed in food during processing and preparation. Various food processing techniques, such as heating, drying, grilling, and fermentation, can generate hazardous chemicals such as acrylamide (AA), advanced glycation end products (AGEs), heterocyclic aromatic amines (HAAs), furan, polycyclic aromatic hydrocarbons (PAHs), N-nitroso compounds (NOCs), monochloropropane diols (MCPD) and their esters (MCPDE) which can be detrimental to human health. Despite efforts to prevent the formation of these compounds during processing, eliminating them is often challenging due to their unknown formation mechanisms. It is critical to identify the potential harm to human health in processed food and understand the mechanisms by which harmful compounds form during processing, as prolonged exposure to these toxic compounds can lead to health problems. Various mitigation strategies, such as the use of diverse pre- and post-processing treatments, product reformulation, additives, variable process conditions, and novel integrated processing techniques, have been proposed to control these food hazards. In this review, we summarize the formation and occurrence, the potential for harm to human health produced by process contaminants in food, and potential mitigation strategies to minimize their impact.
Collapse
Affiliation(s)
- Ahmadullah Zahir
- Faculty of Veterinary Sciences, Department of Food Science and Technology, Afghanistan National Agricultural Sciences & Technology University, Kandahar, Afghanistan
| | - Iftikhar Ali Khan
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Maazullah Nasim
- Faculty of Agriculture, Department of Horticulture, Kabul University, Kabul, Afghanistan
| | - Mohammad Naeem Azizi
- Faculty of Veterinary Sciences, Department of Pre-Clinic, Afghanistan National Agricultural Sciences & Technology University, Kandahar, Afghanistan
| | - Fidelis Azi
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou, Guangdong, China
| |
Collapse
|
2
|
Piscopo A, Mincione A, Summo C, Silletti R, Giacondino C, Rocco I, Pasqualone A. Influence of the Mozzarella Type on Chemical and Sensory Properties of "Pizza Margherita". Foods 2024; 13:209. [PMID: 38254510 PMCID: PMC10814738 DOI: 10.3390/foods13020209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 12/29/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND According to Neapolitan Pizza Traditional Specialty Guaranteed (TSG) regulation, Mozzarella di Bufala Campana and Fiordilatte mozzarella are the exclusive cheeses to be used, together with tomato and extra virgin olive oil (EVOO), to season pizza in the "Margherita" variant. However, the so-called "Pizza mozzarella", that is a diary product having lower moisture content and a longer shelf life than Mozzarella di Bufala Campana and Fiordilatte mozzarella, is widely used in many pizzerias, both in Italy and abroad. Therefore, we investigated its quality, in comparison with Mozzarella di Bufala and Fiordilatte mozzarella, as well as its effect on the quality of the Margherita pizza. METHODS Chemical and sensory analyses were conducted on mozzarella samples and on baked pizza topping samples. RESULTS The results revealed a better quality of pizza with Mozzarella di Bufala and Fiordilatte mozzarella for their higher antioxidant activity, oxidative stability and lower amount of undesired volatile compounds. CONCLUSIONS The use of Mozzarella di Bufala and Fiordilatte mozzarella in the preparation of Margherita pizza improves its quality, especially if these mozzarella types are combined with other high-quality ingredients, namely tomato sauce and EVOO, characterized by the presence of antioxidant compounds (e.g., α-tocopherol not affected by the heat treatment of pizza baking.
Collapse
Affiliation(s)
- Amalia Piscopo
- Department AGRARIA, University Mediterranea of Reggio Calabria, via dell’Università 25, 89124 Reggio Calabria, Italy; (A.P.); (C.G.); (I.R.)
| | - Antonio Mincione
- Department AGRARIA, University Mediterranea of Reggio Calabria, via dell’Università 25, 89124 Reggio Calabria, Italy; (A.P.); (C.G.); (I.R.)
| | - Carmine Summo
- Department of Soil, Plant and Food Science (DISSPA), University of Bari Aldo Moro, via Amendola, 165/a, 70126 Bari, Italy; (C.S.); (R.S.); (A.P.)
| | - Roccangelo Silletti
- Department of Soil, Plant and Food Science (DISSPA), University of Bari Aldo Moro, via Amendola, 165/a, 70126 Bari, Italy; (C.S.); (R.S.); (A.P.)
| | - Corinne Giacondino
- Department AGRARIA, University Mediterranea of Reggio Calabria, via dell’Università 25, 89124 Reggio Calabria, Italy; (A.P.); (C.G.); (I.R.)
| | - Ilenia Rocco
- Department AGRARIA, University Mediterranea of Reggio Calabria, via dell’Università 25, 89124 Reggio Calabria, Italy; (A.P.); (C.G.); (I.R.)
| | - Antonella Pasqualone
- Department of Soil, Plant and Food Science (DISSPA), University of Bari Aldo Moro, via Amendola, 165/a, 70126 Bari, Italy; (C.S.); (R.S.); (A.P.)
| |
Collapse
|
3
|
Rutkowska J, Baranowski D, Antoniewska-Krzeska A, Kostyra E. Comparison of Storage-Related Volatile Profiles and Sensory Properties of Cookies Containing Xylitol or Sucrose. Foods 2023; 12:4270. [PMID: 38231744 PMCID: PMC10706587 DOI: 10.3390/foods12234270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/24/2023] [Accepted: 11/24/2023] [Indexed: 01/19/2024] Open
Abstract
Excessive consumption of simple sugars is responsible for non-communicable diseases such as obesity, cardiovascular diseases, and diabetes. Xylitol has anticarcinogenic, prebiotic-like characteristics and a lower glycaemic index and caloric value than sugars, which makes it a valuable alternative sweetener. The aim of this study was to examine the effects of storage of volatile compounds and sensory profiles of cookies containing xylitol as a sucrose alternative or sucrose by applying solid-phase microextraction gas chromatography/mass spectrometry and quantitative descriptive analysis. The volatile compound profiles of both kinds of cookies were similar, especially regarding markers of Maillard reactions (Strecker aldehydes, pyrazines) and unfavourable compounds (aldehydes, hydrocarbons, and organic acids). Throughout the period of storage lasting 0-9 months, the total content of hydrocarbons was stable and averaged 10.2% in xylitol cookies and 12.8% in sucrose cookies; their storage for 12 months significantly (p < 0.05) increased the contents to 58.2% and 60.35%, respectively. Unlike sucrose, xylitol improved the stability of the pH and water activity of cookies and sensory attributes such as buttery aroma and texture characteristics during 12 months of storage. The results indicated that 9 months of cookie storage was the maximum recommended period. The inclusion of xylitol in cookies might replace sucrose and high-fructose-corn syrup and synthetic additives commonly used in industrial production.
Collapse
Affiliation(s)
- Jaroslawa Rutkowska
- Institute of Human Nutrition Sciences, Faculty of Human Nutrition, Warsaw University of Life Sciences, Nowoursynowska St. 159c, 02-776 Warsaw, Poland; (D.B.); (A.A.-K.); (E.K.)
| | | | | | | |
Collapse
|
4
|
López-Ruiz R, Marin-Saez J, Cunha SC, Fernandes A, de Freitas V, Viegas O, Ferreira IMPLVO. Investigating the Impact of Dietary Fibers on Mycotoxin Bioaccessibility during In Vitro Biscuit Digestion and Metabolites Identification. Foods 2023; 12:3175. [PMID: 37685107 PMCID: PMC10486935 DOI: 10.3390/foods12173175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/17/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Mycotoxins contamination is a real concern worldwide due to their high prevalence in foods and high toxicity; therefore, strategies that reduce their gastrointestinal bioaccessibility and absorption are of major relevance. The use of dietary fibers as binders of four mycotoxins (zearalenone (ZEA), deoxynivalenol (DON), HT-2, and T-2 toxins) to reduce their bioaccessibility was investigated by in vitro digestion of biscuits enriched with fibers. K-carrageenan is a promising fiber to reduce the bioaccessibility of ZEA, obtaining values lower than 20%, while with pectin a higher reduction of DON, HT-2, and T-2 (50-88%) was achieved. Three metabolites of mycotoxins were detected, of which the most important was T-2-triol, which was detected at higher levels compared to T-2. This work has demonstrated the advantages of incorporating dietary fibers into a biscuit recipe to reduce the bioaccessibility of mycotoxins and to obtain healthier biscuits than when a conventional recipe is performed due to its high content of fiber.
Collapse
Affiliation(s)
- Rosalía López-Ruiz
- LAQV/REQUIMTE, Laboratory of Bromatology and Hydrology, Department of Chemical Sciences, Porto University, 4050-313 Porto, Portugal; (J.M.-S.); (S.C.C.); (O.V.); (I.M.P.L.V.O.F.)
- Research Group “Analytical Chemistry of Contaminants”, Department of Chemistry and Physics, Research Centre for Mediterranean Intensive Agrosystems and Agri-Food Biotechnology (CIAIMBITAL), University of Almeria, Agrifood Campus of International Excellence, ceiA3, E-04120 Almeria, Spain
| | - Jesús Marin-Saez
- LAQV/REQUIMTE, Laboratory of Bromatology and Hydrology, Department of Chemical Sciences, Porto University, 4050-313 Porto, Portugal; (J.M.-S.); (S.C.C.); (O.V.); (I.M.P.L.V.O.F.)
- Research Group “Analytical Chemistry of Contaminants”, Department of Chemistry and Physics, Research Centre for Mediterranean Intensive Agrosystems and Agri-Food Biotechnology (CIAIMBITAL), University of Almeria, Agrifood Campus of International Excellence, ceiA3, E-04120 Almeria, Spain
| | - Sara. C. Cunha
- LAQV/REQUIMTE, Laboratory of Bromatology and Hydrology, Department of Chemical Sciences, Porto University, 4050-313 Porto, Portugal; (J.M.-S.); (S.C.C.); (O.V.); (I.M.P.L.V.O.F.)
| | - Ana Fernandes
- LAQV/REQUIMTE, Department of Chemistry and Biochemistry, Science Faculty, Porto University, 4169-007 Porto, Portugal; (A.F.); (V.d.F.)
| | - Victor de Freitas
- LAQV/REQUIMTE, Department of Chemistry and Biochemistry, Science Faculty, Porto University, 4169-007 Porto, Portugal; (A.F.); (V.d.F.)
| | - Olga Viegas
- LAQV/REQUIMTE, Laboratory of Bromatology and Hydrology, Department of Chemical Sciences, Porto University, 4050-313 Porto, Portugal; (J.M.-S.); (S.C.C.); (O.V.); (I.M.P.L.V.O.F.)
- Faculty of Nutrition and Food Sciences, University of Porto, 4150-180 Porto, Portugal
| | - Isabel M. P. L. V. O. Ferreira
- LAQV/REQUIMTE, Laboratory of Bromatology and Hydrology, Department of Chemical Sciences, Porto University, 4050-313 Porto, Portugal; (J.M.-S.); (S.C.C.); (O.V.); (I.M.P.L.V.O.F.)
| |
Collapse
|
5
|
Squeo G, De Angelis D, Caputi AF, Pasqualone A, Summo C, Caponio F. Screening of Acrylamide Content in Commercial Plant-Based Protein Ingredients from Different Technologies. Foods 2023; 12:foods12061331. [PMID: 36981257 PMCID: PMC10048331 DOI: 10.3390/foods12061331] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/13/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
The demand of plant-based protein ingredients (PBPIs) in the food sector has strongly increased over recent years. These ingredients are produced under a wide range of technological processes that impact their final characteristics. This work aimed to evaluate acrylamide contamination in a range of PBPIs produced with different technologies and classified into four categories i.e., flours, dry-fractionated proteins, wet-extracted proteins, and texturized vegetable proteins. The results highlighted a remarkable variability in the acrylamide contamination in all the classes under investigation, with the flours showing the lowest mean acrylamide content (280 µg kg-1) compared with the wet-extracted proteins that showed the highest (451 µg kg-1). These differences could likely be associated with the different processing technologies used to obtain the protein ingredients. These findings suggest the need to monitor acrylamide formation during the processing of PBPIs and, consequently, to study mitigation strategies when necessary.
Collapse
Affiliation(s)
- Giacomo Squeo
- Department of Soil, Plant and Food Science (DISSPA), University of Bari Aldo Moro, Via Amendola, 165/a, 70126 Bari, Italy
| | - Davide De Angelis
- Department of Soil, Plant and Food Science (DISSPA), University of Bari Aldo Moro, Via Amendola, 165/a, 70126 Bari, Italy
| | - Antonio Francesco Caputi
- Department of Soil, Plant and Food Science (DISSPA), University of Bari Aldo Moro, Via Amendola, 165/a, 70126 Bari, Italy
| | - Antonella Pasqualone
- Department of Soil, Plant and Food Science (DISSPA), University of Bari Aldo Moro, Via Amendola, 165/a, 70126 Bari, Italy
| | - Carmine Summo
- Department of Soil, Plant and Food Science (DISSPA), University of Bari Aldo Moro, Via Amendola, 165/a, 70126 Bari, Italy
| | - Francesco Caponio
- Department of Soil, Plant and Food Science (DISSPA), University of Bari Aldo Moro, Via Amendola, 165/a, 70126 Bari, Italy
| |
Collapse
|
6
|
De Angelis D, Pasqualone A, Squeo G, Summo C. Almond okara as a valuable ingredient in biscuit preparation. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:1676-1683. [PMID: 36268730 DOI: 10.1002/jsfa.12286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/18/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND The okara is the water-insoluble residue derived from the production of plant-based beverages, including almond milk. Information on almond okara is scarce, with no scientific references. In the present study, the almond okara was characterized and used to replace wheat flour at 15%, 25% and 35% for biscuit preparation. RESULTS The contents of protein, lipid and dietary fiber of almond okara were 140.08, 421.16 and 407.90 g kg-1 dry matter, respectively. The lipid fraction of almond okara showed contents of triacylglycerol oligopolymers and oxidized triacylglycerols of 0.12 and 5.14 g kg-1 , respectively, which were significantly lower than the levels observed in the sunflower oil used in the formulation of biscuits. Consequently, the biscuits containing okara showed a content of triacylglycerol oligopolymers lower than that of control biscuits. The texture analysis revealed that the addition of the okara at 25% and 35% caused a significant increase in biscuit hardness and a reduction of the brittleness, compared to the control. The sensory evaluation confirmed these data, highlighting the slight impact of the almond okara on the almond odor, taste and flavor attributes. CONCLUSION Almond okara is a valuable by-product that can be easily used as an ingredient for biscuit preparation, exploiting its fiber, protein and lipid content to improve the nutritional value of food, with a limited impact on the sensory properties. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Davide De Angelis
- Department of Soil, Plant and Food Science (DISSPA), University of Bari Aldo Moro, Bari, Italy
| | - Antonella Pasqualone
- Department of Soil, Plant and Food Science (DISSPA), University of Bari Aldo Moro, Bari, Italy
| | - Giacomo Squeo
- Department of Soil, Plant and Food Science (DISSPA), University of Bari Aldo Moro, Bari, Italy
| | - Carmine Summo
- Department of Soil, Plant and Food Science (DISSPA), University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
7
|
Effect of Oil Type Used in Neapolitan Pizza TSG Topping on Its Physical, Chemical, and Sensory Properties. Foods 2022; 12:foods12010041. [PMID: 36613257 PMCID: PMC9818686 DOI: 10.3390/foods12010041] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/17/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND According to the regulations of the Neapolitan Pizza TSG, extra virgin olive oil must be exclusively used as topping ingredient, together with tomato for pizza marinara-type production. As, often deliberately, other oils are replaced by pizza makers for economical and organoleptic purposes, the present study was conducted to analyze the quality of pizza depending on the oil typology used. METHODS Chemical and sensory analyses were performed on olive oils and on pizza topping mix samples after cooking to detect changes due to the applied cooking processing. RESULTS The results revealed the best quality of a monovarietal olive oil (Ottobratica cv.) for their peculiar phenolic content related to the best oxidation stability after pizza's cooking, expressed as bioactive amounts and lower presence of undesired volatile compounds. CONCLUSIONS The use of an extra virgin monovarietal olive oil, such as Ottobratica cv., in the topping of pizza is preferable to other oils, also EVOO, because of its higher quality, which is reflected in greater health and pleasant characteristics from a sensorial point of view.
Collapse
|
8
|
Zharylkasynova Z, Iskakova G, Baiysbayeva M, Izembayeva A, Slavov A. The influence of beet pectin concentrate and whole-ground corn flour on the quality and safety of hardtacks. POTRAVINARSTVO 2022. [DOI: 10.5219/1780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Currently, the main task of food manufacturers is to continuously improve quality while complying with legal regulations primarily related to ensuring product safety for consumers. In this regard, using pectin substances as natural detoxifiers and wholemeal flour in the production of hardtacks will solve the problem of meeting the population's needs for safe food products with high nutritional and biological value. The article substantiates the sequence and parameters of technological operations for producing pectin concentrate from ‘Ardan’ sugar beet. The effectiveness of the use of beet pectin concentrate and whole-ground corn flour in the production of hardtacks has been substantiated experimentally based on a study of their qualitative characteristics, chemical composition and safety. The optimal dosage of pectin concentrate was determined at 10% and whole-ground corn flour at 15% in the production of hardtacks from first-grade wheat flour, where the properties of the gluten and the quality of finished products were similar to the control samples. The use of ‘Ardan’ sugar beet pectin concentrate made it possible to alter the dough's properties to increase its firmness and elasticity. It was found that the food and biological value of the developed hardtacks was higher than that of the control samples. The products obtained complied with the safety requirements of TR CU 021/2011 Technical Regulations of the Customs Union ‘On Food Safety’.
Collapse
|
9
|
Haider NN, Altemimi AB, George SS, Baioumy AA, El-Maksoud AAA, Pasqualone A, Abedelmaksoud TG. Nutritional Quality and Safety Characteristics of Imported Biscuits Marketed in Basrah, Iraq. APPLIED SCIENCES 2022; 12:9065. [DOI: 10.3390/app12189065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
The ingredients and the preparation methods influence biscuit quality and safety. In Iraq, biscuit imports are increasing every year, but no information is available in the scientific literature on their quality and safety features. This work analyzed three types of biscuits (cookies, crackers, and digestives) sampled in the Basrah markets (Iraq) but produced in Spain, Iran, Turkey, and United Arab Emirates. Nine different brands were considered for each country of origin (n = 36), with three replicates per sample. Moisture, ash, fat, proteins, fiber, water activity, peroxide value, 5-hydroxymethyl-2-furfural (HMF), acrylamide, heavy metals, and microbial load were analyzed. All the nutritional parameters were significantly influenced by the variables “Biscuit type” and “Country”. Cookies showed significantly higher fat content and lower protein content than crackers and digestives, as well as higher peroxide value (which was below the limit set by the FAO/WHO within the World Wood Program). Spanish samples had more fat and fewer proteins than biscuits made in other countries. Very high variability was observed in HMF (from not detected to 62.08 mg/kg) and AA content (reaching 1421.8 μg/kg). Cadmium was always absent, and lead was considerably below the allowed limit. Yeasts and molds were above the limits in five samples.
Collapse
|
10
|
Effect of Durum Wheat Oil on the Physico-Chemical and Sensory Features of Biscuits. Foods 2022; 11:foods11091282. [PMID: 35564004 PMCID: PMC9105464 DOI: 10.3390/foods11091282] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/22/2022] [Accepted: 04/26/2022] [Indexed: 01/07/2023] Open
Abstract
Lipids play an important role in defining the overall quality of biscuits, particularly in terms of resistance to oxidation, as well as for their influence on textural and sensorial properties. The aim of this work was to investigate the effects of durum wheat oil on the physico-chemical and sensory features of biscuits. Control biscuits (C) prepared with the commonly used sunflower oil were compared with samples prepared with durum wheat oil at 50% (D50) and 100% replacement levels (D100). The reformulated biscuits were very rich in tocols, especially tocotrienols (982.9, 635.2, and 64.1 mg/kg on lipid fraction weight in D100, D50, and C, respectively). The higher content of antioxidants extended the resistance to the oxidation of biscuits (induction time = 53.61, 70.87, and 79.92 h in C, D50, and D100, respectively). D100 showed the lowest amounts of triacylglycerol oligopolymers and oxidized triacylglycerols, and the lowest amounts of the volatile markers of lipid oxidation (hexanal and nonanal). The use of durum wheat oil did not affect the sensorial and textural properties, compared to C. This study suggests that durum wheat oil could be effectively used in biscuit-making to decrease the oxidative phenomena and increase the bioactives of the end-products.
Collapse
|