1
|
Thakur M, Andola HC, Silva AS. Unveiling techniques and exploring the potential of Myconutraceticals: Analyzing current applications and future prospects. Food Chem 2025; 466:142162. [PMID: 39615350 DOI: 10.1016/j.foodchem.2024.142162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/25/2024] [Accepted: 11/18/2024] [Indexed: 12/14/2024]
Abstract
The escalating demand for natural, nutritionally rich food products underscores the significance of exploring the fungal kingdom, comprising yeast, lichens, molds, and mushrooms, as an abundant reservoir of nutritionalcompounds, secondary metabolites and bioactive components. This paper delves into the nutritional profiles of lichen, yeast, and mushrooms, emphasizing their role as prominent sources of myco-nutraceuticals and functional foods. The growing popularity of eco-friendly extraction techniques for mycochemicals is noted, alongside the exploration of established methods for qualitative and quantitative mycochemical analysis. Notably, studies have affirmed that the incorporation of mushroom and yeast extracts, and their derived compounds, enhances the nutritional profile of meals without compromising desirable dietary attributes. The biological health-promoting properties inherent in extracts and chemicals are also discussed. Anticipated trends the incorporation of myconutrients into functional foods and dietary supplements are highlighted. Finally, challenges hindering the optimal utilization of myconutraceuticals are scrutinized.
Collapse
Affiliation(s)
- Monika Thakur
- Amity Institute of Food Technology, Amity University Uttar Pradesh, Noida, India.
| | - Harish Chandra Andola
- School of Environment and Natural Resources (SENR), Doon University, Uttrakhand, India
| | - Ana Sanches Silva
- University of Coimbra, Faculty of Pharmacy, Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; Centre for Study in Animal Science (CECA), ICETA, University of Porto, Porto, Portugal; Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| |
Collapse
|
2
|
Mehren L, Elliger L, May H, Schieber A, Schulze-Kaysers N. Foaming properties and olfactory profile of fermented chickpea aquafaba and its application in vegan chocolate mousse. Curr Res Food Sci 2025; 10:100988. [PMID: 39995470 PMCID: PMC11848475 DOI: 10.1016/j.crfs.2025.100988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 01/24/2025] [Accepted: 01/26/2025] [Indexed: 02/26/2025] Open
Abstract
Aquafaba, the cooking water of chickpeas and other pulses, is used as a vegan egg white substitute because of its favorable technofunctional properties. Nonetheless, its application is often restricted by a "beany" flavor and poor foaming properties compared to egg white. To overcome these limitations, aquafaba was fermented with two edible basidiomycetes. During the fermentation process, foaming properties were measured and analyzed. Furthermore, the aroma change was described by sensory experts. Based on these results, the optimal fermentation day was selected for each mushroom and sensory profiling was conducted. Subsequently, chocolate mousse was prepared from fermented aquafaba and profiled as well as tested in an acceptance test. Aquafaba profiling revealed significantly lower scores (α = 5%) for "beany" odor in fermented samples. Chocolate mousse produced with fermented aquafaba was described as less "beany" but more "chocolatey" and "cocoa-like" in smell and taste, and more "sweet" in taste. The texture of mousse prepared with fermented aquafaba was more "fluffy/light/porous" and "soft" but less "homogenous" than mousse with unfermented aquafaba. The consumer test showed high overall liking for all mousses. The research described in this study revealed for the first time promising aroma changes based on fermentation in aquafaba and demonstrated improved foaming properties. Thus, fermentation can be considered a useful tool to enhance the quality of aquafaba and thus expand its fields of application.
Collapse
Affiliation(s)
- Lea Mehren
- Institute of Nutritional and Food Sciences, Molecular Food Technology, Faculty of Agricultural, Nutritional and Engineering Sciences, University of Bonn, Friedrich-Hirzebruch-Allee 7, 53115, Bonn, Germany
| | - Lena Elliger
- Institute of Nutritional and Food Sciences, Molecular Food Technology, Faculty of Agricultural, Nutritional and Engineering Sciences, University of Bonn, Friedrich-Hirzebruch-Allee 7, 53115, Bonn, Germany
| | - Hanna May
- Institute of Nutritional and Food Sciences, Molecular Food Technology, Faculty of Agricultural, Nutritional and Engineering Sciences, University of Bonn, Friedrich-Hirzebruch-Allee 7, 53115, Bonn, Germany
| | - Andreas Schieber
- Institute of Nutritional and Food Sciences, Molecular Food Technology, Faculty of Agricultural, Nutritional and Engineering Sciences, University of Bonn, Friedrich-Hirzebruch-Allee 7, 53115, Bonn, Germany
| | - Nadine Schulze-Kaysers
- Institute of Nutritional and Food Sciences, Molecular Food Technology, Faculty of Agricultural, Nutritional and Engineering Sciences, University of Bonn, Friedrich-Hirzebruch-Allee 7, 53115, Bonn, Germany
| |
Collapse
|
3
|
Meng L, Nie Y, Zhou Q, Zheng T, Song J, Zhang C, Chen H, Lin D, Cao S, Xu S. Effect of hot-air drying processing on the volatile organic compounds and maillard precursors of Dictyophora Rubrovalvata based on GC-IMS, HPLC and LC-MS. Food Chem 2025; 463:141074. [PMID: 39236392 DOI: 10.1016/j.foodchem.2024.141074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/21/2024] [Accepted: 08/29/2024] [Indexed: 09/07/2024]
Abstract
The dynamic changes in volatile organic compounds (VOCs), reducing sugars, and amino acids of Dictyophora rubrovalvata (DR) at various drying temperatures were analyzed using GC-IMS, HPLC, and LC-MS. Orthogonal partial least squares discriminant analysis (OPLS-DA) combined with VOCs indicated that drying temperature of 80 °C was optimal. Variable importance in the projection (VIP) and relative odor activity value (ROAV) were employed to identify 22 key VOCs. The findings suggested that esters played a predominant role among the VOCs. Pearson correlation analysis revealed that serine (Ser), glutamine (Gln), lysine (Lys), alanine (Ala), threonine (Thr), glutamic acid (Glu), asparagine (Asn), ribose, and glucose were closely associated with the formation of esters, aldehydes, ketones, pyrimidines, and pyrazines. In conclusion, this study laid a foundational theory for elucidating the characteristics aroma substances and their production pathways, providing a valuable reference for analysing the flavor characteristics of DR.
Collapse
Affiliation(s)
- Lingshuai Meng
- School of Food Science and Engineering, Guiyang University, Guiyang, Guizhou 550005, PR China; Guizhou Engineering Research Center for Characteristic Flavor Perception and Quality Control of Drug-Food Homologous Resources, 550005, Guiyang, Guizhou, China
| | - Yu Nie
- School of Food Science and Engineering, Guiyang University, Guiyang, Guizhou 550005, PR China; Guizhou Engineering Research Center for Characteristic Flavor Perception and Quality Control of Drug-Food Homologous Resources, 550005, Guiyang, Guizhou, China
| | - Qingsong Zhou
- Guiyang jirentang pharmaceutical Co.Ltd, Guiyang, Guizhou 550000, PR China
| | - Tingting Zheng
- School of Food Science and Engineering, Guiyang University, Guiyang, Guizhou 550005, PR China; Guizhou Engineering Research Center for Characteristic Flavor Perception and Quality Control of Drug-Food Homologous Resources, 550005, Guiyang, Guizhou, China
| | - Jianxin Song
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, PR China
| | - Chao Zhang
- Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing 100097, PR China
| | - Haijiang Chen
- School of Food Science and Engineering, Guiyang University, Guiyang, Guizhou 550005, PR China; Guizhou Engineering Research Center for Characteristic Flavor Perception and Quality Control of Drug-Food Homologous Resources, 550005, Guiyang, Guizhou, China
| | - Dong Lin
- School of Food Science and Engineering, Guiyang University, Guiyang, Guizhou 550005, PR China; Guizhou Engineering Research Center for Characteristic Flavor Perception and Quality Control of Drug-Food Homologous Resources, 550005, Guiyang, Guizhou, China
| | - Sen Cao
- School of Food Science and Engineering, Guiyang University, Guiyang, Guizhou 550005, PR China
| | - Su Xu
- School of Food Science and Engineering, Guiyang University, Guiyang, Guizhou 550005, PR China; Guizhou Engineering Research Center for Characteristic Flavor Perception and Quality Control of Drug-Food Homologous Resources, 550005, Guiyang, Guizhou, China.
| |
Collapse
|
4
|
Moutia I, Lakatos E, Kovács AJ. Impact of Dehydration Techniques on the Nutritional and Microbial Profiles of Dried Mushrooms. Foods 2024; 13:3245. [PMID: 39456307 PMCID: PMC11507520 DOI: 10.3390/foods13203245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/05/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
The global consumption of dried mushrooms has increased worldwide because of their rich nutritional value and culinary versatility. Dehydration methods such as sun drying, hot air drying, freeze drying, and microwave drying are employed to prolong the shelf life of a food product. These methods can also affect the food product's nutritional value and the final product's microbial profile. Each technique affects the retention of essential nutrients like vitamins, minerals, and bioactive compounds differently. Additionally, these techniques vary in their effectiveness at reducing microbial load, impacting the dried mushrooms' safety and shelf life. This review addresses the gap in understanding how different dehydration methods influence dried mushrooms' nutritional quality and microbial safety, which is crucial for optimizing their processing and consumption. It targets researchers, food processors, and consumers seeking to improve the quality and safety of dried mushrooms. This review comprehensively examines the impact of major dehydration techniques, including sun drying, hot air drying, microwave drying, and freeze drying, on the nutritional and microbial profiles of dried mushrooms. Each method is evaluated for its effectiveness in preserving essential nutrients and reducing microbial load. Current research indicates that freeze drying is particularly effective in preserving nutritional quality, while hot air and microwave drying significantly reduce microbial load. However, more well-designed studies are needed to fully understand the implications of these methods for safety and nutritional benefits. These findings are valuable for optimizing dehydration methods for high-quality dried mushrooms that are suited for culinary and medicinal use.
Collapse
Affiliation(s)
- Imane Moutia
- Department of Biosystems Engineering and Precision Technology, Albert Kázmér Mosonmagyaróvár Faculty of Agricultural and Food Sciences, Széchenyi István University, Vár tér 2, H-9200 Mosonmagyaróvár, Hungary;
| | - Erika Lakatos
- Department of Food Science, Albert Kázmér Mosonmagyaróvár Faculty of Agricultural and Food Sciences, Széchenyi István University, Lucsony utca 15-17, H-9200 Mosonmagyaróvár, Hungary;
| | - Attila József Kovács
- Department of Biosystems Engineering and Precision Technology, Albert Kázmér Mosonmagyaróvár Faculty of Agricultural and Food Sciences, Széchenyi István University, Vár tér 2, H-9200 Mosonmagyaróvár, Hungary;
| |
Collapse
|
5
|
Hutasingh N, Tubtimrattana A, Pongpamorn P, Pewlong P, Paemanee A, Tansrisawad N, Siripatrawan U, Sirikantaramas S. Unraveling the effects of drying techniques on chaya leaves: Metabolomics analysis of nonvolatile and volatile metabolites, umami taste, and antioxidant capacity. Food Chem 2024; 446:138769. [PMID: 38422636 DOI: 10.1016/j.foodchem.2024.138769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 01/23/2024] [Accepted: 02/13/2024] [Indexed: 03/02/2024]
Abstract
Chaya (Cnidoscolus chayamansa) leaves are known for their strong umami taste and widespread use as a dried seasoning. This study aimed to assess the impact of different drying methods [freeze drying (FD), vacuum drying, oven drying at 50 °C and 120 °C (OD120) and pan roasting (PR)] on the metabolome using mass spectrometry, umami intensity, and antioxidant properties of chaya leaves. The predominant volatile compound among all samples, 3-methylbutanal, exhibited the highest relative odor activity value (rOAV), imparting a malt-like odor, while hexanal (green grass-like odor) and 2-methylbutanal (coffee-like odor) are the second highest rOAV in the FD and PR samples, respectively. OD120 and PR samples possessed the highest levels of umami-tasting amino acids and 5'-ribonucleotides as well as the most intense umami taste, whereas FD samples exhibited the highest antioxidant capacity. These findings enhance our understanding of the aroma characteristics, umami taste, and antioxidant potential of processed chaya leaves.
Collapse
Affiliation(s)
- Nuti Hutasingh
- Department of Food Technology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Apinya Tubtimrattana
- Department of Forensic Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand
| | - Pornkanok Pongpamorn
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Putthamas Pewlong
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Atchara Paemanee
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Nat Tansrisawad
- Department of Forensic Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Ubonrat Siripatrawan
- Department of Food Technology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand.
| | - Supaart Sirikantaramas
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand; Metabolomics for Life Sciences Research Unit, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
6
|
Yang H, Li W, Zi L, Xu N, Guo Z, Chen B, Hua Y, Guo L. Comprehensive analysis of the dynamic changes of volatile and non-volatile metabolites in boletus edulis during processing by HS-SPME-GC-MS and UPLC-MS/MS analysis. Food Chem X 2024; 22:101487. [PMID: 38855096 PMCID: PMC11157221 DOI: 10.1016/j.fochx.2024.101487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/16/2024] [Accepted: 05/16/2024] [Indexed: 06/11/2024] Open
Abstract
In order to investigate the dynamic changes of flavor compounds, Ultra Performance Liquid Chromatography Tandem Mass Spectrometry (UPLC-MS/MS) combined with Headspace Solid Phase Microextraction Gas Chromatography Mass Spectrometry (HS-SPME-GC-MS) was used to detect the metabolites in different drying processes. A total of 80 volatile compounds and 1319 non-volatile compounds were identified. The trend in the changes of C-8 compounds and sulfur-containing compounds were generally consistent with the trend of key enzyme activities. 479 differential metabolites were identified and revealed that metabolic profiles of compounds in Boletus edulis were altered with increased organic acids and derivatives and lipids and lipid-like molecules. Fatty acids and amino acids were transformed into volatile compounds under the action of enzymes, which played a significant role in the formation of the distinctive flavor of Boletus edulis. Our study provided a theoretical support for fully comprehending the formation mechanism of flavor from Boletus edulis during drying processes.
Collapse
Affiliation(s)
- Hao Yang
- The Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming, Yunnan, 650224, China
- College of Biological Science and Food Engineering, Southwest Forestry University, Kunming, Yunnan, 650224, China
| | - Weilan Li
- The Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming, Yunnan, 650224, China
- College of Biological Science and Food Engineering, Southwest Forestry University, Kunming, Yunnan, 650224, China
| | - Luxi Zi
- The Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming, Yunnan, 650224, China
- College of Biological Science and Food Engineering, Southwest Forestry University, Kunming, Yunnan, 650224, China
| | - Ningmeng Xu
- The Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming, Yunnan, 650224, China
- College of Biological Science and Food Engineering, Southwest Forestry University, Kunming, Yunnan, 650224, China
| | - Zhengyin Guo
- College of Biological Science and Food Engineering, Southwest Forestry University, Kunming, Yunnan, 650224, China
| | - Bangjie Chen
- College of Biological Science and Food Engineering, Southwest Forestry University, Kunming, Yunnan, 650224, China
| | - Yan Hua
- The Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming, Yunnan, 650224, China
| | - Lei Guo
- The Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming, Yunnan, 650224, China
- College of Biological Science and Food Engineering, Southwest Forestry University, Kunming, Yunnan, 650224, China
| |
Collapse
|
7
|
Hou Z, Xia R, Li Y, Xu H, Wang Y, Feng Y, Pan S, Wang Z, Ren H, Qian G, Wang H, Zhu J, Xin G. Key components, formation pathways, affecting factors, and emerging analytical strategies for edible mushrooms aroma: A review. Food Chem 2024; 438:137993. [PMID: 37992603 DOI: 10.1016/j.foodchem.2023.137993] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/09/2023] [Accepted: 11/12/2023] [Indexed: 11/24/2023]
Abstract
Aroma is one of the decisive factors affecting the quality and consumer acceptance of edible mushrooms. This review summarized the key components and formation pathways of edible mushroom aroma. It also elaborated on the affecting factors and emerging analytical strategies of edible mushroom aroma. A total of 1308 volatile organic compounds identified in edible mushrooms, 61 were key components. The formation of these compounds is closely related to fatty acid metabolism, amino acid metabolism, lentinic acid metabolism, and terpenoid metabolism. The aroma profiles of edible mushrooms were affected by genetic background, preharvest factors, and preservation methods. Molecular sensory science and omics techniques are emerging analytical strategies to reveal aroma information of edible mushrooms. This review would provide valuable data and insights for future research on edible mushroom aroma.
Collapse
Affiliation(s)
- Zhenshan Hou
- Shenyang Agricultural University, College of Food Science, Shenyang 110866, Liaoning, China
| | - Rongrong Xia
- Shenyang Agricultural University, College of Food Science, Shenyang 110866, Liaoning, China
| | - Yunting Li
- Shenyang Agricultural University, College of Food Science, Shenyang 110866, Liaoning, China
| | - Heran Xu
- Shenyang Agricultural University, College of Food Science, Shenyang 110866, Liaoning, China
| | - Yafei Wang
- Shenyang Agricultural University, College of Food Science, Shenyang 110866, Liaoning, China
| | - Yao Feng
- Shenyang Agricultural University, College of Food Science, Shenyang 110866, Liaoning, China
| | - Song Pan
- Shenyang Agricultural University, College of Food Science, Shenyang 110866, Liaoning, China
| | - Zijian Wang
- Shenyang Agricultural University, College of Food Science, Shenyang 110866, Liaoning, China
| | - Hongli Ren
- Shenyang Agricultural University, College of Food Science, Shenyang 110866, Liaoning, China
| | - Guanlin Qian
- Shenyang Agricultural University, College of Food Science, Shenyang 110866, Liaoning, China
| | - Huanyu Wang
- Shenyang Agricultural University, College of Food Science, Shenyang 110866, Liaoning, China
| | - Jiayi Zhu
- Shenyang Agricultural University, College of Food Science, Shenyang 110866, Liaoning, China
| | - Guang Xin
- Shenyang Agricultural University, College of Food Science, Shenyang 110866, Liaoning, China; Liaoning Key Laboratory of Development and Utilization for Natural Products Active Molecules, Anshan 114007, Liaoning, China.
| |
Collapse
|
8
|
Guo Y, Zhao J, Wei H, Gao Q, Song S, Fan Y, Yan D, Liu Y, Wang S. Disentangling the Tissue-Specific Variations of Volatile Flavor Profiles of the Lentinula edodes Fruiting Body. Foods 2023; 13:86. [PMID: 38201114 PMCID: PMC10778291 DOI: 10.3390/foods13010086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/13/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
For Lentinula edodes, its characteristic flavor is the key determinant for consumer preferences. However, the tissue-specific volatile flavor variations of the fruiting body have been overlooked. Here, we comprehensively investigated the volatile flavor profiles of different tissues, including the pileus skin, context, gill, and stipe of the fruiting body, of two widely cultivated L. edodes strains (T2 and 0912) using the gas chromatography-mass spectrometry (GC-MS) technique combined with a multivariate analysis. We show that the eight-carbon and sulfur compounds, which represented 43.2-78.0% and 1.4-42.9% of the total volatile emissions for strains 0912 and T2, respectively, dominated their volatile profiles. Compared with strain T2, strain 0912 had a higher total content of eight-carbon compounds but a lower total content of sulfur compounds in the fruiting body. The sulfur compounds represented 32.2% and 42.9% of the total volatile emissions for strains 0912 and T2, respectively. In contrast, they constituted only 1.4% in the stipes of strain 0912 and 9.0% in the skin of strain T2. The proportions of the predominant C8 compounds (1-octen-3-one, 1-octen-3-ol, and 3-octanone) and sulfur compounds (lenthionine, 1,2,4-trithiolane, dimethyl disulfide, and dimethyl trisulfide) changed depending on the tissues and strains. Using machine learning, we show that the prediction accuracy for different strains and tissues using their volatile profiles could reach 100% based on the highly diverse strain- and tissue-derived volatile variations. Our results reveal and highlight for the first time the comprehensive tissue-specific volatile flavor variations of the L. edodes fruiting body. These findings underscore the significance of considering strain and tissue differences as pivotal variables when aiming to develop products with volatile flavor characteristics.
Collapse
Affiliation(s)
- Yuan Guo
- Beijing Engineering Research Center for Edible Mushroom, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (Y.G.); (Q.G.); (S.S.); (Y.F.); (D.Y.); (Y.L.)
| | - Jing Zhao
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot 010018, China;
| | - Huixian Wei
- College of Agriculture and Food Engineering, Baise University, Baise 533000, China
| | - Qi Gao
- Beijing Engineering Research Center for Edible Mushroom, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (Y.G.); (Q.G.); (S.S.); (Y.F.); (D.Y.); (Y.L.)
| | - Shuang Song
- Beijing Engineering Research Center for Edible Mushroom, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (Y.G.); (Q.G.); (S.S.); (Y.F.); (D.Y.); (Y.L.)
| | - Yangyang Fan
- Beijing Engineering Research Center for Edible Mushroom, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (Y.G.); (Q.G.); (S.S.); (Y.F.); (D.Y.); (Y.L.)
| | - Dong Yan
- Beijing Engineering Research Center for Edible Mushroom, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (Y.G.); (Q.G.); (S.S.); (Y.F.); (D.Y.); (Y.L.)
| | - Yu Liu
- Beijing Engineering Research Center for Edible Mushroom, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (Y.G.); (Q.G.); (S.S.); (Y.F.); (D.Y.); (Y.L.)
| | - Shouxian Wang
- Beijing Engineering Research Center for Edible Mushroom, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (Y.G.); (Q.G.); (S.S.); (Y.F.); (D.Y.); (Y.L.)
| |
Collapse
|
9
|
Cruz RMS, Albertos I, Romero J, Agriopoulou S, Varzakas T. Innovations in Food Packaging for a Sustainable and Circular Economy. ADVANCES IN FOOD AND NUTRITION RESEARCH 2023; 108:135-177. [PMID: 38460998 DOI: 10.1016/bs.afnr.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/11/2024]
Abstract
Packaging is fundamental to maintaining the quality of food, but its contribution with a negative footprint to the environment must be completely changed worldwide to reduce pollution and climate change. Innovative and sustainable packaging and new strategies of reutilization are necessary to reduce plastic waste accumulation, maintain food quality and safety, and reduce food losses and waste. The purpose of this chapter is to present innovations in food packaging for a sustainable and circular economy. First, to present the eco-design packaging approach as well as new strategies for recycled or recyclable materials in food packaging. Second, to show current trends in new packaging materials developed from the use of agro-industrial wastes as well as new methods of production, including 3D/4D printing, electrostatic spinning, and the use of nanomaterials.
Collapse
Affiliation(s)
- Rui M S Cruz
- Department of Food Engineering, Institute of Engineering, Universidade do Algarve, Campus da Penha, Faro, Portugal; MED-Mediterranean Institute for Agriculture, Environment and Development and CHANGE-Global Change and Sustainability Institute, Faculty of Sciences and Technology, Campus de Gambelas, Universidade do Algarve, Faro, Portugal.
| | - Irene Albertos
- Nursing Department, Nursing Faculty, University of Valladolid, Valladolid, Spain
| | - Janira Romero
- Faculty of Sciences and Art, Universidad Católica de Ávila (UCAV), Calle Canteros s/n, Ávila, Spain
| | - Sofia Agriopoulou
- Department of Food Science and Technology, University of Peloponnese, Tripoli, Greece
| | - Theodoros Varzakas
- Department of Food Science and Technology, University of Peloponnese, Tripoli, Greece
| |
Collapse
|
10
|
Deng G, Li J, Liu H, Wang Y. Volatile compounds and aroma characteristics of mushrooms: a review. Crit Rev Food Sci Nutr 2023; 64:13175-13192. [PMID: 37788142 DOI: 10.1080/10408398.2023.2261133] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Mushrooms are popular due to their rich medicinal and nutritional value. Of the many characteristics of mushrooms, aroma has received extensive attention and research as a key determinant of consumer preference. This paper reviews the production, role and contribution of common volatile compounds (VCs) in wild and cultivated mushrooms, and explores the methods used to characterize them and the factors influencing aroma. To date, more than 347 common VCs have been identified in mushrooms, such as aldehydes, ketones, alcohols and sulfur-containing compounds. Extraction and identification of VCs is a critical step and combining multiple analytical methods is an effective strategy in mushroom aroma studies. In addition, the VCs and the aroma of mushrooms are affected by a variety of factors such as genetics, growing conditions, and processing methods. However, the mechanism of influence is unknown. Further studies on the production mechanisms of VCs, their contribution to aroma, and the factors influencing their formation need to be determined in order to fully elucidate aroma and flavor of mushrooms.
Collapse
Affiliation(s)
- Guangmei Deng
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Jieqing Li
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Honggao Liu
- Yunnan Key Laboratory of Gastrodia and Fungi Symbiotic Biology, Zhaotong University, Zhaotong, Yunnan, China
| | - Yuanzhong Wang
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| |
Collapse
|
11
|
Xie L, Jiang YS, Wang YB, Xiao HW, Liu W, Ma Y, Zhao XY. Changes in the Physical Properties and Volatile Odor Characteristics of Shiitake Mushrooms ( Lentinula edodes) in Far Infrared Radiation Drying. Foods 2023; 12:3213. [PMID: 37685146 PMCID: PMC10486590 DOI: 10.3390/foods12173213] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
The effects of far infrared radiation drying (FID) on physical properties (drying kinetics, color, shrinkage ratio, rehydration ratio, and microstructural characterization) and volatile odor characteristics (volatile odor profile distinction and volatile compounds) of shiitake mushrooms were evaluated in this study. During the FID, the drying time decreased with the increase in drying temperature, and it had a less significant effect in the lower temperature range. The increase in drying temperature led to increasing shrinkage and collapse in the microstructure, resulting in a decreased rehydration rate and highlighting the influence of microstructure characteristics on macroscopic properties. Higher drying temperatures employed in the FID process were found to be associated with a decreasing L* value and an increasing ΔE value. The application of principal component analysis can effectively distinguish the significant effect of FID on the volatile odor profiles of shiitake mushrooms. Compared to raw shiitake mushrooms, FID treatment has endowed samples with a greater variety of volatile compounds. After processing with FID, there have been increases in volatile components such as sulfur compounds, acids, nitrogen compounds, and aldehydes, while volatile components like alcohols, ketones, and hydrocarbons have shown decreases.
Collapse
Affiliation(s)
- Long Xie
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agricultural and Forestry Sciences, National Engineering Research Center for Vegetables, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture and Rural Areas, Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing 100097, China; (L.X.)
| | - Yu-Si Jiang
- Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agricultural and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Vegetable Postharvest Processing of Ministry of Agriculture and Rural Areas, Beijing 100097, China
| | - Yu-Bin Wang
- Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agricultural and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Vegetable Postharvest Processing of Ministry of Agriculture and Rural Areas, Beijing 100097, China
| | - Hong-Wei Xiao
- College of Engineering, China Agricultural University, 17 Qinghua Donglu, Beijing 100083, China
| | - Wei Liu
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agricultural and Forestry Sciences, National Engineering Research Center for Vegetables, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture and Rural Areas, Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing 100097, China; (L.X.)
| | - Yue Ma
- Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agricultural and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Vegetable Postharvest Processing of Ministry of Agriculture and Rural Areas, Beijing 100097, China
| | - Xiao-Yan Zhao
- Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agricultural and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Vegetable Postharvest Processing of Ministry of Agriculture and Rural Areas, Beijing 100097, China
| |
Collapse
|
12
|
Chaipoot S, Wiriyacharee P, Phongphisutthinant R, Buadoktoom S, Srisuwun A, Somjai C, Srinuanpan S. Changes in Physicochemical Characteristics and Antioxidant Activities of Dried Shiitake Mushroom in Dry-Moist-Heat Aging Process. Foods 2023; 12:2714. [PMID: 37509806 PMCID: PMC10379447 DOI: 10.3390/foods12142714] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Shiitake mushrooms are prized for their unique flavor and bioactive properties. While there has been extensive research on drying methods, a comprehensive investigation of the effects of drying parameters in the dry-moist-heat system on shiitake quality is still needed. This study aimed to investigate the effects of dry-moist-heat aging on dried shiitake mushrooms comprehensively. Four aging temperatures, specifically 50, 60, 70, and 80 °C, were applied to the mushrooms, maintaining a constant humidity level of 75% RH and aging duration of 20 days. Color analysis revealed a progressive decrease in measured values as aging temperature increased, indicating noticeable changes in visual characteristics. Regarding amino acid composition, glutamic acid was found to be the predominant amino acid in shiitake mushrooms in the range of 90.29-467.42 mg/100 g. However, aging led to a reduction in overall amino acid content, with higher aging temperatures resulting in greater decline. Similarly, the equivalent umami content (EUC) also decreased (from 123.99 to 7.12 g MSG/100 g) with the increase in aging temperatures up to 80 °C, suggesting a decline in the overall umami taste sensation. Interestingly, despite the reduction in amino acid levels and umami content, the aging process positively impacted the phenolic compounds and the antioxidant activity of dried shiitake mushrooms. The antioxidative abilities of all aged mushroom extracts for DPPH, ABTS, and FRAP ranged from 65.01 to 81.39 µg TE/mL, 87.04 to 258.33 µg GAE/mL, and 184.50 to 287.68 µg FeSO4/mL, respectively. The utilization of aged temperature at 60 °C for 20 days with controlled relative humidity (~75%) should be a suitable aging condition of this edible mushroom with both antioxidant and umami qualities. Nevertheless, the control sample demonstrated higher levels of amino acid content and EUC compared to the aged samples. Conversely, the aged samples exhibited higher polyphenol content and greater antioxidant activity. Depending on specific requirements, these powders can be used in food formulation as flavor enhancers for control samples or as enriching agents for polyphenols and antioxidant activity in matured samples. Therefore, all of the powders obtained have potential applications in the field of nutrition.
Collapse
Affiliation(s)
- Supakit Chaipoot
- Multidisciplinary Research Institute, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Pairote Wiriyacharee
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
- Division of Product Development Technology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
- Processing and Product Development Factory, The Royal Project Foundation, Chiang Mai 50100, Thailand
| | - Rewat Phongphisutthinant
- Multidisciplinary Research Institute, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Srirana Buadoktoom
- Division of Product Development Technology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Aungkana Srisuwun
- Division of Product Development Technology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Chalermkwan Somjai
- Processing and Product Development Factory, The Royal Project Foundation, Chiang Mai 50100, Thailand
| | - Sirasit Srinuanpan
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
13
|
Jiang Y, Zhao Q, Deng H, Li Y, Gong D, Huang X, Long D, Zhang Y. The Nutrients and Volatile Compounds in Stropharia rugoso-annulata by Three Drying Treatments. Foods 2023; 12:foods12102077. [PMID: 37238895 DOI: 10.3390/foods12102077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/19/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023] Open
Abstract
This study aimed to examine the differences in the nutrients and volatile compounds of Stropharia rugoso-annulata after undergoing three different drying treatments. The fresh mushrooms were dried using hot air drying (HAD), vacuum freeze drying (VFD), and natural air drying (NAD), respectively. After that, the nutrients, volatile components, and sensory evaluation of the treated mushrooms were comparably analyzed. Nutrients analysis included proximate compositions, free amino acids, fatty acids, mineral elements, bioactive compositions, and antioxidant activity. Volatile components were identified by headspace-solid phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS) and analyzed with principal component analysis (PCA). Finally, sensory evaluation was conducted by ten volunteers for five sensory properties. The results showed that the HAD group had the highest vitamin D2 content (4.00 μg/g) and antioxidant activity. Compared with other treatments, the VFD group had higher overall nutrient contents, as well as being more preferred by consumers. Additionally, there were 79 volatile compounds identified by HS-SPME-GC-MS, while the NAD group showed the highest contents of volatile compounds (1931.75 μg/g) and volatile flavor compounds (1307.21 μg/g). PCA analysis suggested the volatile flavor compositions were different among the three groups. In summary, it is recommended that one uses VFD for obtaining higher overall nutritional values, while NAD treatment increased the production of volatile flavor components of the mushroom.
Collapse
Affiliation(s)
- Yu Jiang
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Qilong Zhao
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Haolan Deng
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Yongjun Li
- Gansu Provincial Center for Disease Control and Prevention, Lanzhou 730000, China
| | - Di Gong
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Xiaodan Huang
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Danfeng Long
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Ying Zhang
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
14
|
Chen D, Sheng M, Wang S, Chen X, Leng A, Lin S. Dynamic changes and formation of key contributing odorants with amino acids and reducing sugars as precursors in shiitake mushrooms during hot air drying. Food Chem 2023; 424:136409. [PMID: 37220684 DOI: 10.1016/j.foodchem.2023.136409] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 05/25/2023]
Abstract
The dynamic variations in key contributing odorants, amino acids and reducing sugars in shiitake mushrooms during hot-air drying were determined by gas chromatography-mass spectrometry (GC-MS), high performance liquid chromatography-tandem mass (HPLC-MS/MS) and ion chromatography (IC). The potential precursors were explored by the partial least squares-discriminant analysis and Pearson correlation analysis, and Met, Cys, and ribose were considered as the possible precursors of dimethyl trisulfide and lenthionine. The verification experiments in the absence and presence of shiitake mushroom matrix further confirmed that Met and its interaction with ribose both contributed to generating dimethyl trisulfide. The polynomial nonlinear fitting curve could better represent the dose-effect relationships of Met and Met-ribose to produce dimethyl trisulfide with R2 of 0.9579 and 0.9957. Conversely, ribose, Cys or Cys-ribose were verified to be unable to form the key contributing odorants. Collectively, the results provided a method to reveal precursors and generation pathway of odorants.
Collapse
Affiliation(s)
- Dong Chen
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; Liaoning Engineering Research Center of Special Dietary Food, China
| | - Menglong Sheng
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; Liaoning Engineering Research Center of Special Dietary Food, China
| | - Silu Wang
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; Liaoning Engineering Research Center of Special Dietary Food, China
| | - Xiuhan Chen
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; Liaoning Engineering Research Center of Special Dietary Food, China
| | - Aoxue Leng
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; Liaoning Engineering Research Center of Special Dietary Food, China
| | - Songyi Lin
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; Liaoning Engineering Research Center of Special Dietary Food, China.
| |
Collapse
|
15
|
Shen Q, He Z, Ding Y, Sun L. Effect of Different Drying Methods on the Quality and Nonvolatile Flavor Components of Oudemansiella raphanipes. Foods 2023; 12:676. [PMID: 36766204 PMCID: PMC9914412 DOI: 10.3390/foods12030676] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/08/2023] Open
Abstract
Different drying methods affect the quality of foods. The aim of this study is to explore the effects of seven drying methods, including hot air drying at 60 °C and 80 °C, ultrasound-assisted hot air drying at 60 °C and 80 °C, microwave drying, vacuum microwave drying, and vacuum freeze-drying, on the quality and nonvolatile flavor components of Oudemansiella raphanipes. The vacuum freeze-drying resulted in minimal collapse, mild shrinkage at the macroscopic level, and the formation of uniform pores at the microscopic level on the surfaces of O. raphanipes mushrooms. In addition, vacuum freeze-drying can improve the color attributes of the mushrooms. Therefore, the appearance and shape of vacuum freeze-drying treated O. raphanipes were closest to those of fresh mushrooms. We found that ultrasound-assisted treatment can effectively shorten the drying time of O. raphanipes. The drying time of ultrasound-assisted hot air drying at 60 °C was 20% shorter than that of hot air drying at 60 °C, and the drying time of ultrasound-assisted hot air drying at 80 °C was 37.5% shorter than that of hot air drying at 80 °C. The analysis of the nonvolatile flavor components showed that the ultrasound-assisted hot air drying at 60 °C of the O. raphanipes sample had the highest content of free amino acids (83.78 mg/g) and an equivalent umami concentration value (1491.33 monosodium glutamate/100 g). The vacuum freeze-drying treated O. raphanipes had the highest 5'-nucleotide content of 2.44 mg/g. Therefore, vacuum freeze-drying and ultrasound-assisted hot air drying at 60 °C, followed by vacuum microwave drying, might protect the flavor components of O. raphanipes to the greatest extent. However, microwave drying, hot air drying at 80 °C, and ultrasound-assisted hot air drying at 80 °C could destroy the flavor components of O. raphanipes during drying. The results of this study provided data support for the industrial production of dried O. raphanipes.
Collapse
Affiliation(s)
| | | | - Yangyue Ding
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, No. 727 South Jingming Road, Kunming 650500, China
| | | |
Collapse
|
16
|
Bio-nanocomposites and their potential applications in physiochemical properties of cheese: an updated review. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2023. [DOI: 10.1007/s11694-022-01800-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
17
|
Ma Z, Ma Y, Liu Y, Zhou B, Zhao Y, Wu P, Zhang D, Li D. Effects of Maturity and Processing on the Volatile Components, Phytochemical Profiles and Antioxidant Activity of Lotus ( Nelumbo nucifera) Leaf. Foods 2023; 12:foods12010198. [PMID: 36613414 PMCID: PMC9818530 DOI: 10.3390/foods12010198] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 01/04/2023] Open
Abstract
In this study, fresh lotus leaves at two maturity stages were processed to tea products by different methods (white-tea process, green-tea process and black-tea process). The volatile compounds, phytochemical profiles and antioxidant activities of lotus-leaf tea were investigated. A total of 81 volatile components were identified with HS-GC-IMS. The mature lotus-leaf tea showed more volatile compounds than the tender lotus-leaf tea. The lotus leaf treated with the white-tea process had more aroma components than other processing methods. In addition, six types of phenolic compounds, including luteolin, catechin, quercetin, orientin, hyperoside and rutin were identified in the lotus-leaf tea. The mature leaves treated with the green-tea process had the highest levels of TPC (49.97 mg gallic acid/g tea) and TFC (73.43 mg rutin/g tea). The aqueous extract of lotus-leaf tea showed positive scavenging capacities of DPPH and ABTS radicals, and ferric ion reducing power, whereas tender lotus leaf treated with the green-tea process exhibited the strongest antioxidant activity. What is more, the antioxidant activities had a significant positive correlation with the levels of TPC and TFC in lotus-leaf tea. Our results provide a theoretical basis for the manufacture of lotus-leaf-tea products with desirable flavor and health benefits.
Collapse
Affiliation(s)
- Zhili Ma
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Yu Ma
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Yin Liu
- Wuhan Huanghelou Essence and Flavor Co., Ltd., Wuhan 430040, China
| | - Bei Zhou
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yalin Zhao
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ping Wu
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Dexin Zhang
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Deyuan Li
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan 430065, China
- Correspondence: ; Tel.: +86-18071533185
| |
Collapse
|
18
|
Hong M, Han D, Qiao J, Zhou X, Yu H, Shi L. Citric Acid Induces the Increase in Lenthionine Content in Shiitake Mushroom, Lentinula edodes. Foods 2022; 11:foods11244110. [PMID: 36553851 PMCID: PMC9777562 DOI: 10.3390/foods11244110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/09/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Shiitake mushroom, Lentinula edodes, is the second largest edible fungus in the world, with a characteristic aroma. 1,2,3,5,6-pentathioheterocycloheptane, commonly known as lenthionine, is the main source of this aroma. Lenthionine has high commercial value, and if we explore the possible induction mechanism of citric acid in lenthionine synthesis, we can provide a reference for the effective application of citric acid as an inducer. In this paper, the single-factor treatment of Lentinula edodes with variable citric acid concentration and treatment duration showed that the best citric acid concentration for L. edodes was 300 μM, and the best treatment duration was 15 days. Additionally, the optimal design conditions were obtained using the response surface method (RSM); the treatment concentration was 406 μM/L, the treatment duration was 15.6 days, and the lenthionine content was 130 μg/g. γ-Glutamyl transpeptidase (LEGGT) and cystine sulfoxide lyase (LECSL) are the key enzymes involved in the biosynthesis of lanthionine. The expression levels of LEGGT and LECSL genes increased significantly under citric acid treatment. Additionally, the lenthionine content of the silenced strains of LEGGT and LECSL was significantly decreased.
Collapse
|
19
|
The Flavor Profiles of Highland Barley Fermented with Different Mushroom Mycelium. Foods 2022; 11:foods11243949. [PMID: 36553692 PMCID: PMC9778070 DOI: 10.3390/foods11243949] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/18/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
Highland barley was fermented with Cordyceps militaris, Stropharia rugoso-annulata, Morchella esculenta, Schizophyllum commune and Tremella sanguinea. The flavor profiles were investigated by electronic nose (E-nose), headspace solid-phase microextraction gas chromatography-mass spectrometry (HS-SPME-GC-MS) and sensory evaluation by train panel. Fermentation with mushroom mycelium was able to change the aroma profile of highland barley. The original strong grassy taste was reduced due to a decrease in hexanal, decanal and 2-pentylfuran, and new aromatic flavors (floral, sweet and mushroom fragrance) were acquired after fermentation. The overall flavor of the fermented highland barley varied with mushroom strains. Schizophyllum commune gave a heavier sour taste to the fermented highland barley. However, fermentation with T. sanguinea increased the content of methyl 4-methoxybenzoate making the sample difficult to accepted. Fermentation with C. militaris, M. esculenta, and S. rugoso-annulata increased the volatile contents. The high levels of 1-octen-3-ol and esters gave a strong mushroom, oily and fruity flavor. Morchella esculenta showed the best performance and the highest acceptance in the fermented highland barley. Our results suggest that fermentation with mushroom mycelium can improve the flavor of highland barley, which provides an innovative utilization of highland barley.
Collapse
|
20
|
Zhang M, Xing S, Fu C, Fang F, Liu J, Kan J, Qian C, Chai Q, Jin C. Effects of Drying Methods on Taste Components and Flavor Characterization of Cordyceps militaris. Foods 2022; 11:3933. [PMID: 36496741 PMCID: PMC9735880 DOI: 10.3390/foods11233933] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/28/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
The influences of four drying methods (hot air drying (HAD), vacuum freeze drying (VFD), vacuum drying (VD) and intermittent microwave combined with hot air drying (MW-HAD)) on the taste profile and flavor characteristic of Cordyceps militaris were investigated. MW-HAD samples had the highest levels of umami taste 5'-nucleotides, bitter taste amino acids, and equivalent umami concentration (EUC) value. The aroma fingerprints and differences of dried Cordyceps militaris were established by GC-MS with odor activity values (OAVs) and GC-IMS with principal component analysis (PCA). GC-MS data showed that the predominant volatiles of dried samples were aldehydes, alcohols, and ketones. VFD samples had the highest amount of total aroma compounds and C8 compounds. Moreover, 21 aroma-active components (OAVs ≥ 1) were the main contributors to the flavor of dried Cordyceps militaris. The OAVs of 1-octen-3-one and 3-octanone associated with mushroom-like odor in VFD were significantly higher than other samples. Furthermore, a significant difference in flavor compounds of four dried samples was also clearly demonstrated by GC-IMS analysis with PCA. GC-IMS analysis revealed that VFD samples had the most abundant flavor compounds. Overall, MW-HAD was an effective drying method to promote umami taste, and VFD could superiorly preserve volatiles and characteristic aroma compounds in dried Cordyceps militaris.
Collapse
Affiliation(s)
- Man Zhang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Suhui Xing
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Cuncun Fu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Fan Fang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Jun Liu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Juan Kan
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Chunlu Qian
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Qingqing Chai
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Changhai Jin
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| |
Collapse
|
21
|
Xu Y, Liu W, Li L, Cao W, Zhao M, Dong J, Ren G, Bhandari B, Duan X. Dynamic changes of non-volatile compounds and evaluation on umami during infrared assisted spouted bed drying of shiitake mushrooms. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
22
|
Understanding the promotion of heat treatment on the flavor of Lentinula edodes using metabolomics integrated with transcriptomics. Food Res Int 2022; 162:112051. [DOI: 10.1016/j.foodres.2022.112051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 11/18/2022]
|
23
|
Yang B, Huang J, Jin W, Sun S, Hu K, Li J. Effects of Drying Methods on the Physicochemical Aspects and Volatile Compounds of Lyophyllum decastes. Foods 2022; 11:3249. [PMID: 37430997 PMCID: PMC9601802 DOI: 10.3390/foods11203249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/05/2022] [Accepted: 10/13/2022] [Indexed: 12/04/2022] Open
Abstract
In this study, fresh Lyophyllum decastes was dried using hot air drying (HAD), hot air combined with vacuum drying (HAVD), and vacuum freeze drying (VFD). Additionally, the quality and volatile compounds were analyzed. VFD achieved the best color retention, the highest rehydration capacity, and the slightest damaged tissue structure; however, it recorded the longest drying time and the highest energy consumption. HAD was the most energy-efficient of the three methods. Furthermore, the products with more hardness and elasticity were obtained by HAD and HAVD-this finding was convenient for transportation. In addition, GC-IMS demonstrated that the flavor components had significantly changed after drying. A total of 57 volatile flavor compounds was identified, and the aldehyde, alcohol, and ketone compounds were the primary ingredient of the L. decastes flavor component, whereby the relative content of the HAD sample was apparently higher than HAVD and VFD. Taken together, VFD was better at preserving the color and shape of fresh L. decastes, but HAD was more appropriate for drying L. decastes because of the lower energy consumption, and was more economical. Meanwhile, HAD could be used to produce a more intense aroma.
Collapse
Affiliation(s)
- Bin Yang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jianhang Huang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wensong Jin
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Edible Fungal Research Institute (Gutian), Fujian Agriculture and Forestry University, Ningde 352200, China
| | - Shujing Sun
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Edible Fungal Research Institute (Gutian), Fujian Agriculture and Forestry University, Ningde 352200, China
| | - Kaihui Hu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Edible Fungal Research Institute (Gutian), Fujian Agriculture and Forestry University, Ningde 352200, China
| | - Jiahuan Li
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Edible Fungal Research Institute (Gutian), Fujian Agriculture and Forestry University, Ningde 352200, China
| |
Collapse
|
24
|
Samarasiri M, Chen WN. Variations of nonvolatile taste components of mushrooms with different operating conditions and parameters from farm to fork. Crit Rev Food Sci Nutr 2022; 64:3482-3501. [PMID: 36222241 DOI: 10.1080/10408398.2022.2132211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Mushroom is a sustainable food option and a meat substitute which yet needs some strategies to enhance sensory attributes. Especially, their taste characteristics (nonvolatile taste components: soluble sugars, organic acids, free amino acids, and 5'-nucleotides) can vary significantly due to operating conditions and parameters during different stages from farm to fork. This review is aimed to provide an overall view of the determined effects of operating conditions and parameters for mushroom taste attributes, suggestions for future research from lacking variables, and some recommendations for improving the taste perception of mushrooms. Taste compounds of mushrooms alter differently based on cultivation (species, cultivation or maturity stage, substrate composition, part, grade, mycelium strain), cooking (cooking method, time, temperature), preservation, and post-harvest storage conditions (drying parameters, pretreatment, preservation method, gamma irradiation, packaging, storage time and temperature). The dominant tastes of mushrooms given by sweet and umami taste active substances can be enhanced significantly with proper control of parameters during cultivation, cooking, drying, or post-harvest storage. The parameters and variations organized in this review can be used to develop a mathematical model for obtaining optimum taste attributes of mushrooms and mushroom-based meat alternatives and to discover the variables of mushroom species not studied yet.
Collapse
Affiliation(s)
- Malsha Samarasiri
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore City, Singapore
| | - Wei Ning Chen
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore City, Singapore
- Food Science and Technology Program, Nanyang Technological University, Singapore City, Singapore
| |
Collapse
|
25
|
Role of Lipids in Food Flavor Generation. Molecules 2022; 27:molecules27155014. [PMID: 35956962 PMCID: PMC9370143 DOI: 10.3390/molecules27155014] [Citation(s) in RCA: 135] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
Lipids in food are a source of essential fatty acids and also play a crucial role in flavor and off-flavor development. Lipids contribute to food flavor generation due to their degradation to volatile compounds during food processing, heating/cooking, and storage and/or interactions with other constituents developed from the Maillard reaction and Strecker degradation, among others. The degradation of lipids mainly occurs via autoxidation, photooxidation, and enzymatic oxidation, which produce a myriad of volatile compounds. The oxidation of unsaturated fatty acids generates hydroperoxides that then further break down to odor-active volatile secondary lipid oxidation products including aldehydes, alcohols, and ketones. In this contribution, a summary of the most relevant and recent findings on the production of volatile compounds from lipid degradation and Maillard reactions and their interaction has been compiled and discussed. In particular, the effects of processing such as cooking, drying, and fermentation as well as the storage of lipid-based foods on flavor generation are briefly discussed.
Collapse
|
26
|
Wen X, Li W, Li W, Chen W, Zhang Z, Wu D, Yang Y. Quality characteristics and non-volatile taste formation mechanism of Lentinula edodes during hot air drying. Food Chem 2022; 393:133378. [PMID: 35667179 DOI: 10.1016/j.foodchem.2022.133378] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/25/2022] [Accepted: 05/31/2022] [Indexed: 11/16/2022]
Abstract
In this paper, the changes of non-volatile taste substances and the formation mechanism of taste quality of Lentinula edodes during hot air drying at 50 °C were studied. The results showed that with the increase of drying time, the moisture content gradually decreased, volume shrinkage, color deepening, chewiness and viscosity first increased and then decreased. After drying for 8 h, when the moisture content reached 28.68%, the appearance, taste and the overall quality of L.edodes were better. After 12 h drying, the content of free amino acids and organic acids increased significantly, while the content of 5'-nucleotide and soluble sugar decreased significantly, and the EUC value was higher. Succinic acid has the highest TAV value, which contributes the most to the taste of dried L.edodes products. Comprehensive quality analysis of drying process and the guidance for rehydration of dried L.edodes were also predicted.
Collapse
Affiliation(s)
- Xinmeng Wen
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, the People's Republic of China, 1000 Jinqi Road, Shanghai 201403, China; Key Laboratory of Food Nutrition and Functional Food of Hainan Province, College of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Wen Li
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, the People's Republic of China, 1000 Jinqi Road, Shanghai 201403, China.
| | - Wu Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Wanchao Chen
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, the People's Republic of China, 1000 Jinqi Road, Shanghai 201403, China
| | - Zhong Zhang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, the People's Republic of China, 1000 Jinqi Road, Shanghai 201403, China
| | - Di Wu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, the People's Republic of China, 1000 Jinqi Road, Shanghai 201403, China
| | - Yan Yang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, the People's Republic of China, 1000 Jinqi Road, Shanghai 201403, China.
| |
Collapse
|
27
|
Identification of changes in the volatile compounds of robusta coffee beans during drying based on HS-SPME/GC-MS and E-nose analyses with the aid of chemometrics. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113317] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|