1
|
B S, C VT, S K, B S, M I. Advancing Fermented Food Products: Exploring Bioprocess Technologies and Overcoming Challenges. FOOD BIOPROCESS TECH 2024; 17:3461-3482. [DOI: 10.1007/s11947-023-03287-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 12/04/2023] [Indexed: 01/11/2025]
|
2
|
Antonelli G, Chiarello E, Picone G, Tappi S, Baldi G, Di Nunzio M, Mente E, Karapanagiotis S, Vasilaki P, Petracci M, Rocculi P, Bordoni A, Capozzi F. Toward Sustainable and Healthy Fish Products-The Role of Feeding and Preservation Techniques. Foods 2023; 12:2991. [PMID: 37627990 PMCID: PMC10453833 DOI: 10.3390/foods12162991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/01/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Fish is a fundamental component of the human diet, and in the near future the proportion of aquatic foods originating from aquaculture production is expected to increase to over 56%. The sustainable growth of the aquaculture sector involves the use of new sustainable raw materials as substitutes for traditional fishmeal and fish oil ingredients, but it is crucial that the substitution maintains the nutritional value of the fish meat. In addition, the preservation of the nutritional value should be a mandatory requirement of new technologies that extend the shelf life of fish. In this context, we evaluated the impact of a newly formulated feed and three preservation treatments (brine, pulsed electric field (PEF), and PEF plus brine) on the fatty acid composition and protein and lipid digestibility of sea bass fillets. In non-digested fillets, although slightly reduced by the newly formulated feed (standard = 2.49 ± 0.14; newly formulated = 2.03 ± 0.10) the n-3/n-6 PUFA ratio indicated good nutritional value. The preservation treatments did not modify the fatty acid content and profile of non-digested fillets. Conversely, protein and lipid digestibility were not affected by the different diets but were significantly reduced by brine, with or without PEF, while PEF alone had no effect. Overall, our results indicated that the newly formulated feed containing 50% less fishmeal is a good compromise between the sustainability and nutritional value of cultivated seabass, and PEF is a promising preservation technology deserving of further study.
Collapse
Affiliation(s)
- Giorgia Antonelli
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy; (G.A.); (E.C.); (G.P.); (S.T.); (G.B.); (M.P.); (P.R.); (F.C.)
| | - Elena Chiarello
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy; (G.A.); (E.C.); (G.P.); (S.T.); (G.B.); (M.P.); (P.R.); (F.C.)
| | - Gianfranco Picone
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy; (G.A.); (E.C.); (G.P.); (S.T.); (G.B.); (M.P.); (P.R.); (F.C.)
| | - Silvia Tappi
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy; (G.A.); (E.C.); (G.P.); (S.T.); (G.B.); (M.P.); (P.R.); (F.C.)
| | - Giulia Baldi
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy; (G.A.); (E.C.); (G.P.); (S.T.); (G.B.); (M.P.); (P.R.); (F.C.)
| | - Mattia Di Nunzio
- Department of Food, Environmental and Nutritional Sciences (Defens), University of Milan, Via Celoria 2, 20133 Milan, Italy;
| | - Eleni Mente
- Laboratory of Ichthyology-Culture and Pathology of Aquatic Animals, School of Veterinary Medicine, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece;
| | | | | | - Massimiliano Petracci
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy; (G.A.); (E.C.); (G.P.); (S.T.); (G.B.); (M.P.); (P.R.); (F.C.)
- Interdepartmental Centre for Industrial Agri-Food Research (CIRI), University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy
| | - Pietro Rocculi
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy; (G.A.); (E.C.); (G.P.); (S.T.); (G.B.); (M.P.); (P.R.); (F.C.)
- Interdepartmental Centre for Industrial Agri-Food Research (CIRI), University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy
| | - Alessandra Bordoni
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy; (G.A.); (E.C.); (G.P.); (S.T.); (G.B.); (M.P.); (P.R.); (F.C.)
- Interdepartmental Centre for Industrial Agri-Food Research (CIRI), University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy
| | - Francesco Capozzi
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy; (G.A.); (E.C.); (G.P.); (S.T.); (G.B.); (M.P.); (P.R.); (F.C.)
- Interdepartmental Centre for Industrial Agri-Food Research (CIRI), University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy
| |
Collapse
|
3
|
Zhang K, Li F, Li H, Yin C. Sustainable Management of Food Waste during COVID-19 Pandemic: Insights into Irrational Food Hoarding among Chinese Citizens. Foods 2022; 11:4049. [PMID: 36553792 PMCID: PMC9778434 DOI: 10.3390/foods11244049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 12/10/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
During the COVID-19 pandemic, food waste caused by excessive hoarding has accounted a large proportion of the total food waste in urban Chinese households, which indicates that reducing food hoarding has become key to managing household food waste. This study therefore explored the behavioral mechanisms underlying excessive food hoarding among citizens. Based on a sample set of 511 respondents surveyed in Beijing, Hefei, and Guiyang in July 2022, a PLS-SEM model was conducted using SmartPLS 3.0 software to simulate the decision-making process of food hoarding. The following results were found. First, among the households with hoarding, 66.37% had some degree of food waste. Second, hoarding preference was the direct predictor of hoarding behavior, which means that hoarding behavior can be effectively controlled by regulating preferences. Third, group influence including homology consistency and social network support, as well as psychological panic, both enhanced citizens' hoarding preference and induced hoarding behavior. Therefore, it is necessary to weaken group influence and try to help citizens overcome panic. Finally, food supply information release can not only alleviate citizens' psychological panic and weaken group influence, but also block the transformation of preference into behavior. The above results are of great importance for the design of management policies for food waste caused by irrational hoarding during the pandemic.
Collapse
Affiliation(s)
- Kangjie Zhang
- Rural Development Institute, Chinese Academy of Social Sciences, Beijing 100732, China
| | - Fuduo Li
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Huanli Li
- College of Economics and Management, Northwest Agriculture and Forestry University, Yangling, Xianyang 712100, China
| | - Changbin Yin
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Research Center for Agricultural Green Development in China, Beijing 100081, China
| |
Collapse
|
4
|
Chen P, Qiu Y, Chen S, Zhao Y, Wu Y, Wang Y. Insights into the effects of different drying methods on protein oxidation and degradation characteristics of golden pompano ( Trachinotus ovatus). Front Nutr 2022; 9:1063836. [PMID: 36505247 PMCID: PMC9729768 DOI: 10.3389/fnut.2022.1063836] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/01/2022] [Indexed: 11/25/2022] Open
Abstract
The quality of dried fish products differs based on the drying method employed owing to the different drying principles, with changes in protein affecting the quality of these products. Therefore, we investigated the differences in golden pompano (Trachinotus ovatus) fish tissue structure and protein physicochemical properties under different drying methods. Freeze drying (FD) induced less tissue damage, leaving more intact myofibrils, than that of hot air drying (HAD) and heat pump drying (HPD). The structural stability of myofibrillar protein was retained to a greater extent after FD, while myoglobin oxidation was lower, and fish meat color was well maintained. Our findings not only elucidated the effects of several drying methods on the physicochemical properties of fish protein, but also determined the mechanism underlying quality changes observed during the drying process. This provides a theoretical reference for the study of dried fish filet processing.
Collapse
Affiliation(s)
- Peng Chen
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Yingjie Qiu
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Shengjun Chen
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Yongqiang Zhao
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Yanyan Wu
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Yueqi Wang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
5
|
Ali A, Wei S, Ali A, Khan I, Sun Q, Xia Q, Wang Z, Han Z, Liu Y, Liu S. Research Progress on Nutritional Value, Preservation and Processing of Fish-A Review. Foods 2022; 11:3669. [PMID: 36429260 PMCID: PMC9689683 DOI: 10.3390/foods11223669] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/09/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022] Open
Abstract
The global population has rapidly expanded in the last few decades and is continuing to increase at a rapid pace. To meet this growing food demand fish is considered a balanced food source due to their high nutritious value and low cost. Fish are rich in well-balanced nutrients, a good source of polyunsaturated fatty acids and impose various health benefits. Furthermore, the most commonly used preservation technologies including cooling, freezing, super-chilling and chemical preservatives are discussed, which could prolong the shelf life. Non-thermal technologies such as pulsed electric field (PEF), fluorescence spectroscopy, hyperspectral imaging technique (HSI) and high-pressure processing (HPP) are used over thermal techniques in marine food industries for processing of most economical fish products in such a way as to meet consumer demands with minimal quality damage. Many by-products are produced as a result of processing techniques, which have caused serious environmental pollution. Therefore, highly advanced technologies to utilize these by-products for high-value-added product preparation for various applications are required. This review provides updated information on the nutritional value of fish, focusing on their preservation technologies to inhibit spoilage, improve shelf life, retard microbial and oxidative degradation while extending the new applications of non-thermal technologies, as well as reconsidering the values of by-products to obtain bioactive compounds that can be used as functional ingredients in pharmaceutical, cosmetics and food processing industries.
Collapse
Affiliation(s)
- Ahtisham Ali
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institute, Guangdong Provincial Engineering Technology Research Centre of Seafood, Zhanjiang 524088, China
| | - Shuai Wei
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institute, Guangdong Provincial Engineering Technology Research Centre of Seafood, Zhanjiang 524088, China
| | - Adnan Ali
- Livestock & Dairy Development Department, Abbottabad 22080, Pakistan
| | - Imran Khan
- Department of Food Science and Technology, The University of Haripur, Haripur 22620, Pakistan
| | - Qinxiu Sun
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institute, Guangdong Provincial Engineering Technology Research Centre of Seafood, Zhanjiang 524088, China
| | - Qiuyu Xia
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institute, Guangdong Provincial Engineering Technology Research Centre of Seafood, Zhanjiang 524088, China
| | - Zefu Wang
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institute, Guangdong Provincial Engineering Technology Research Centre of Seafood, Zhanjiang 524088, China
| | - Zongyuan Han
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institute, Guangdong Provincial Engineering Technology Research Centre of Seafood, Zhanjiang 524088, China
| | - Yang Liu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institute, Guangdong Provincial Engineering Technology Research Centre of Seafood, Zhanjiang 524088, China
| | - Shucheng Liu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institute, Guangdong Provincial Engineering Technology Research Centre of Seafood, Zhanjiang 524088, China
- Collaborative Innovation Centre of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
6
|
Effects of single-, dual-, and multi-frequency ultrasound-assisted freezing on the muscle quality and myofibrillar protein structure in large yellow croaker ( Larimichthys crocea). Food Chem X 2022; 15:100362. [PMID: 35756459 PMCID: PMC9218204 DOI: 10.1016/j.fochx.2022.100362] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/01/2022] [Accepted: 06/12/2022] [Indexed: 11/21/2022] Open
Abstract
MUAF significantly promoted the freezing process of large yellow croakers. MUAF enhanced the quality of large yellow croakers. MUAF better maintained the stability of fish protein. The mechanisms of single-, dual-, and multi-frequency UAF were analyzed.
Ultrasound-assisted freezing (UAF) has been proved to be a new technology to improve the quality of frozen foods. Frequency is an important parameter affecting UAF result. This study was to investigate the effects of single-, dual- and multi-frequency UAF on muscle quality and myofibrillar protein structure in large yellow croaker (Larimichthys crocea), providing reference for the application of multi-frequency UAF in frozen foods. Multi-frequency UAF increased the freezing rate and had lower thawing loss, thiobarbituric acid reactive substances (TBARS) value, total volatile basic nitrogen (TVB-N) value, and higher immobilized water content. Multi-frequency UAF had lower carbonyl, higher sulfhydryl content, and more stable myofibrillar protein secondary and tertiary structures. Confocal laser scanning microscopy (CLSM) indicated that the filamentous polymer in muscle fibrin solution with multi-frequency UAF was transformed into more evenly distributed units. In general, multi-frequency UAF significantly improved the freezing rate, reduced lipid oxidation, and maintained the myofibrillar structure.
Collapse
|
7
|
Investigation of biomechanical characteristics of novel chitosan from dung beetle and its application potential on stored tomato fruit. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01540-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Wangtueai S, Phimolsiripol Y. Special issue on “marine food innovation”. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sutee Wangtueai
- College of Maritime Studies and Management Chiang Mai University Samut Sakon Thailand
| | - Yuthana Phimolsiripol
- Food Innovation and Packaging Center (FIN) Chiang Mai University Chiang Mai Thailand
| |
Collapse
|
9
|
Study on nucleotide, myofibrillar protein biochemical properties and microstructure of freeze-dried scallop striated muscle during storage and rehydration. Food Res Int 2022; 158:111461. [DOI: 10.1016/j.foodres.2022.111461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/25/2022] [Accepted: 06/01/2022] [Indexed: 11/17/2022]
|
10
|
Çiçek S, Özoğul F. Nanotechnology-based preservation approaches for aquatic food products: A review with the current knowledge. Crit Rev Food Sci Nutr 2022:1-24. [DOI: 10.1080/10408398.2022.2096563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Semra Çiçek
- Department of Agriculture Biotechnology, Ataturk University, Erzurum, Turkey
| | - Fatih Özoğul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana, Turkey
| |
Collapse
|
11
|
Lu WC, Chiu CS, Hsieh CW, Chan YJ, Liang ZC, Wang CCR, Mulio AT, Le DHT, Li PH. Calcined Oyster Shell Powder as a Natural Preservative for Maintaining Quality of White Shrimp (Litopenaeus vannamei). BIOLOGY 2022; 11:biology11020334. [PMID: 35205200 PMCID: PMC8869679 DOI: 10.3390/biology11020334] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/11/2022] [Accepted: 02/17/2022] [Indexed: 12/02/2022]
Abstract
Simple Summary The Food and Agriculture Organization of the United Nations (FAO) indicated that the average global production of oyster shell waste for the year 2019 was 3.08 million tons. Many serious problems include the emission of displeasing odors and pollution of the seaside, which are harmful to the environment. Nonetheless, a solution for this issue would be to reuse the waste and produce a product that has economic benefits and solves the environmental problems. Using calcined oyster shells as a natural preservative might solve the problem of oyster shell waste. In this study, we used calcined oyster shell powder (COSP) as a natural preservative for improving shrimp shelf-life during 12 days under refrigerated conditions. As compared with the control, COSP treatment effectively retarded pH change, reduced the formation of total volatile basic nitrogen, and inhibited bacterial growth during refrigerated storage. The development of preservatives for aquatic products is expected to delay the growth of and spoilage by microorganisms in the refrigerated state, thus providing more barrier protection for aquatic food safety. Abstract Oyster shell waste has led to many problems, including displeasing odors, pollution of the seaside, and harm to the environment. Using calcined oyster shells as a natural preservative might solve the problem of oyster shell waste. We studied the use of calcined oyster shell powder (COSP) as a natural preservative for improving shrimp shelf-life over 12 days under refrigerated conditions. As compared with the control, COSP treatment effectively retarded pH change, reduced the formation of total volatile basic nitrogen, and inhibited bacterial growth during refrigerated storage. In addition, shrimp muscle lipid oxidation measured by peroxide value (PV) and thiobarbituric acid (TBA) was decreased during storage. The quality was preserved up to 12 days with 2.0–4.0% COSP treatment as compared with only 6 days for un-treated shrimp. The development of preservatives for aquatic products is expected to delay growth of and spoilage by microorganisms in the refrigerated state, thus providing more barrier protection for aquatic food safety.
Collapse
Affiliation(s)
- Wen-Chien Lu
- Department of Food and Beverage Management, Chung-Jen Junior College of Nursing, Health Sciences and Management, 217, Hung-Mao-Pi, Chia-Yi City 60077, Taiwan;
| | - Chien-Shan Chiu
- Department of Dermatology, Taichung Veterans General Hospital, 1650 Section 4 Taiwan Boulevard, Xitun District, Taichung 40705, Taiwan;
| | - Chang-Wei Hsieh
- Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Road, South District, Taichung 40227, Taiwan;
| | - Yung-Jia Chan
- College of Biotechnology and Bioresources, Da-Yeh University, 168, University Road, Dacun, Changhua 51591, Taiwan;
| | - Zeng-Chin Liang
- Department of Medicinal Botanical and Health Applications, Da-Yeh University, 168, University Road, Dacun, Changhua 51591, Taiwan;
| | - Chiun-C. Roger Wang
- Department of Food and Nutrition, Providence University, 200, Section 7, Taiwan Boulevard, Shalu District, Taichung City 43301, Taiwan; (C.-C.R.W.); (A.T.M.)
| | - Amanda Tresiliana Mulio
- Department of Food and Nutrition, Providence University, 200, Section 7, Taiwan Boulevard, Shalu District, Taichung City 43301, Taiwan; (C.-C.R.W.); (A.T.M.)
| | - Dung Huynh Thi Le
- Faculty of Food Science and Technology, Ho-Chi-Minh City University of Food Industry, 140, Le Trong Tan Street, Tay Thanh Ward, Tan Phu District, Ho-Chi-Minh City 700000, Vietnam;
| | - Po-Hsien Li
- Department of Food and Nutrition, Providence University, 200, Section 7, Taiwan Boulevard, Shalu District, Taichung City 43301, Taiwan; (C.-C.R.W.); (A.T.M.)
- Correspondence: ; Tel.: +886-4-2632-8001 (ext. 15326)
| |
Collapse
|