1
|
Deng X, Niu L, Xiao J, Guo Q, Liang J, Tang J, Liu X, Xiao C. Involvement of intestinal flora and miRNA into the mechanism of coarse grains improving type 2 diabetes: an overview. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:4257-4267. [PMID: 36224106 DOI: 10.1002/jsfa.12270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/09/2022] [Accepted: 10/12/2022] [Indexed: 06/06/2023]
Abstract
The prevalence of type 2 diabetes has been growing at an increasing rate worldwide. Dietary therapy is probably the easiest and least expensive method to prevent and treat diabetes. Previous studies have reported that coarse grains have anti-diabetic effects. Although considerable efforts have been made on the anti-diabetic function of different grains, the mechanisms of coarse grains on type 2 diabetes have not been systematically compared and summarized so far. Intestinal flora, reported as the main 'organ' of action underlying coarse grains, is an important factor in the alleviation of type 2 diabetes by coarse grains. Furthermore, microRNA (miRNA), as a new disease marker and 'dark nutrient', plays a likely influential role in cross-border communication among coarse grains, intestinal flora, and hosts. Given this context, this article reviews several possible mechanisms for the role of coarse grains on diabetes, incorporating resistance to inflammation and oxidative stress, repair of insulin signaling and β-cell dysfunction, and highlights the regulation of intestinal flora disorders and miRNAs expression, along with some novel insights. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xu Deng
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Li Niu
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Jing Xiao
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Qianqian Guo
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Jiayi Liang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Jiayu Tang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Chunxia Xiao
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| |
Collapse
|
2
|
Wei L, Fan J, Dong R, Zhang M, Jiang Y, Zhao Q, Zhao G, Chen B, Li J, Liu S. The Effect of Dietary Pattern on Metabolic Syndrome in a Suburban Population in Shanghai, China. Nutrients 2023; 15:2185. [PMID: 37432318 DOI: 10.3390/nu15092185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 04/25/2023] [Accepted: 04/28/2023] [Indexed: 07/12/2023] Open
Abstract
Metabolic syndrome (MetS) is recognized as one of the most severe non-communicable chronic diseases. Diet plays an essential role in the development and exacerbation of MetS. Thus, this study aimed to investigate the relationship between dietary patterns and MetS in a suburban population in Shanghai, China. Data were collected on the Zhongshan community from the Shanghai Suburban Adult Cohort and Biobank (SSACB) study between May and September 2017. A total of 5426 participants who completed the questionnaire investigation, physical measurements, and biological sample collection were effectively enrolled in this study. Both posteriori and priori methods were utilized to generate different dietary patterns, including the dietary approaches to stop hypertension (DASH) and Mediterranean diet (MD). The prevalence of MetS in this study was 22.47%. Compared to the reference, dietary patterns with a higher intake of "dairy and fruits" and "coarse cereals and soy products" had protective effects on MetS (p < 0.05). However, no significant correlation with MetS was observed for DASH and MD. Our study recommends higher consumption of fruits, coarse cereals, and soy products, which was associated with a lower prevalence of MetS in the suburban population of Shanghai. The correlation of DASH and MD with MetS in the Chinese population requires further exploration.
Collapse
Affiliation(s)
- Lanxin Wei
- Key Laboratory of Public Health Safety of Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Jing Fan
- Key Laboratory of Public Health Safety of Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Ruihua Dong
- Key Laboratory of Public Health Safety of Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Mei Zhang
- Zhongshan Community Health Care Center, Songjiang District, Shanghai 201613, China
| | - Yonggen Jiang
- Songjiang District Center for Disease Control and Prevention, Shanghai 201620, China
| | - Qi Zhao
- Key Laboratory of Public Health Safety of Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Genming Zhao
- Key Laboratory of Public Health Safety of Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Bo Chen
- Key Laboratory of Public Health Safety of Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Jing Li
- Zhongshan Community Health Care Center, Songjiang District, Shanghai 201613, China
| | - Shaojie Liu
- Key Laboratory of Public Health Safety of Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| |
Collapse
|
3
|
Yang X, Teng C, Zou L, Ren G. Functional Ingredients in Minor Grain Crops. Foods 2023; 12:1261. [PMID: 36981187 PMCID: PMC10048658 DOI: 10.3390/foods12061261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023] Open
Abstract
Minor grain crops are generally recognized as less-produced cereal or pseudo-cereal grain crops, excluding the four major grain crops of wheat, rice, corn, and soybean [...].
Collapse
Affiliation(s)
- Xiushi Yang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, No. 348 Xianjiahu West Road, Changsha 410205, China;
| | - Cong Teng
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Haidian District, Beijing 100081, China
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, No. 50 Zhongling Street, Xuanwu District, Nanjing 210018, China
| | - Liang Zou
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Guixing Ren
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Haidian District, Beijing 100081, China
- College of Life Science, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
4
|
Principal Components and Cluster Analysis of Trace Elements in Buckwheat Flour. Foods 2023; 12:foods12010225. [PMID: 36613441 PMCID: PMC9818536 DOI: 10.3390/foods12010225] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/29/2022] [Accepted: 12/31/2022] [Indexed: 01/05/2023] Open
Abstract
Essential trace elements are required at very low quantities in the human body but are essential for various physiological functions. Each trace element has a specific role and a lack of these elements can easily cause a threat to health and can be potentially fatal. In this study, inductively coupled plasma mass spectrometry (ICP-MS) and inductively coupled plasma atomic emission spectrometry (ICP-AES) were used to determine the content of trace metal elements Ca, Fe, Cu, Mg, Zn, Se, Mo, Mn, and Cd in buckwheat flour. The content and distribution characteristics of trace metal elements were investigated using principal component and cluster analysis. The principal component analysis yielded a four-factor model that explained 73.64% of the test data; the cumulative contribution of the variance of the 1st and 2nd principal factors amounted to 44.41% and showed that Cu, Mg, Mo, and Cd are the characteristic elements of buckwheat flour. The cluster analysis divided the 28 buckwheat samples into two groups, to some extent, reflecting the genuineness of buckwheat flour. Buckwheat flour is rich in essential trace metal elements and can be used as a source of dietary nutrients for Mg and Mo.
Collapse
|
5
|
Yin X, Liu S, Zhang X, Jian Y, Wen J, Zhou R, Yin N, Liu X, Hou C, Wang J. Hypoglycemic Effects and Mechanisms of Buckwheat-Oat-Pea Composite Flour in Diabetic Rats. Foods 2022; 11:foods11233938. [PMID: 36496746 PMCID: PMC9739861 DOI: 10.3390/foods11233938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/01/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022] Open
Abstract
Nutritional intervention is a basic way to prevent and treat diabetes mellitus. Appropriate whole grain intake daily is recommended. The study aimed to explore the feasibility of a kind of buckwheat-oat-pea composite flour (BOP, quality ratio of buckwheat:oats:peas = 6:1:1) as a stable food substitution and its underlying mechanisms. High-fat food (HFD) and streptozotocin injection were used to induce diabetes in rats, and buckwheat, oats, and three different doses of BOP were added to the HFD separately for diet intervention. The whole study lasted for 10 weeks, and the glucose tolerance test, lipids, liver injury, and gut microbiota were evaluated in the last week. The diabetic rat model was successfully induced. The BOP significantly changed the glucose and lipids metabolism, decreased liver injury, and changed the composition of the gut microbiota of diabetic rats. The outcomes of the current study revealed that BOP is a potential stable food substitution.
Collapse
|
6
|
Qin H, Wu H, Shen K, Liu Y, Li M, Wang H, Qiao Z, Mu Z. Fermented Minor Grain Foods: Classification, Functional Components, and Probiotic Potential. Foods 2022; 11:3155. [PMID: 37430904 PMCID: PMC9601907 DOI: 10.3390/foods11203155] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/01/2022] [Accepted: 10/04/2022] [Indexed: 08/05/2023] Open
Abstract
Fermented minor grain (MG) foods often have unique nutritional value and functional characteristics, which are important for developing dietary culture worldwide. As a kind of special raw material in fermented food, minor grains have special functional components, such as trace elements, dietary fiber, and polyphenols. Fermented MG foods have excellent nutrients, phytochemicals, and bioactive compounds and are consumed as a rich source of probiotic microbes. Thus, the purpose of this review is to introduce the latest progress in research related to the fermentation products of MGs. Specific discussion is focused on the classification of fermented MG foods and their nutritional and health implications, including studies of microbial diversity, functional components, and probiotic potential. Furthermore, this review discusses how mixed fermentation of grain mixtures is a better method for developing new functional foods to increase the nutritional value of meals based on cereals and legumes in terms of dietary protein and micronutrients.
Collapse
Affiliation(s)
- Huibin Qin
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau, Ministry of Agriculture, Shanxi Key Laboratory of Genetic Resources and Genetic Improvement of Minor Crops, Taiyuan 030031, China
| | - Houbin Wu
- Shennong Technology Group Co., Ltd., Jinzhong 030801, China
| | - Ke Shen
- Shennong Technology Group Co., Ltd., Jinzhong 030801, China
| | - Yilin Liu
- Shennong Technology Group Co., Ltd., Jinzhong 030801, China
| | - Meng Li
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau, Ministry of Agriculture, Shanxi Key Laboratory of Genetic Resources and Genetic Improvement of Minor Crops, Taiyuan 030031, China
| | - Haigang Wang
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau, Ministry of Agriculture, Shanxi Key Laboratory of Genetic Resources and Genetic Improvement of Minor Crops, Taiyuan 030031, China
| | - Zhijun Qiao
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau, Ministry of Agriculture, Shanxi Key Laboratory of Genetic Resources and Genetic Improvement of Minor Crops, Taiyuan 030031, China
| | - Zhixin Mu
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau, Ministry of Agriculture, Shanxi Key Laboratory of Genetic Resources and Genetic Improvement of Minor Crops, Taiyuan 030031, China
| |
Collapse
|
7
|
Zhao Y, Zhai G, Li X, Tao H, Li L, He Y, Zhang X, Wang F, Hong G, Zhu Y. Metabolomics Reveals Nutritional Diversity among Six Coarse Cereals and Antioxidant Activity Analysis of Grain Sorghum and Sweet Sorghum. Antioxidants (Basel) 2022; 11:1984. [PMID: 36290708 PMCID: PMC9598553 DOI: 10.3390/antiox11101984] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 09/30/2022] [Accepted: 10/01/2022] [Indexed: 11/29/2022] Open
Abstract
Coarse cereals are rich in dietary fiber, B vitamins, minerals, secondary metabolites, and other bioactive components, which exert numerous health benefits. To better understand the diversity of metabolites in different coarse cereals, we performed widely targeted metabolic profiling analyses of six popular coarse cereals, millet, coix, buckwheat, quinoa, oat, and grain sorghum, of which 768 metabolites are identified. Moreover, quinoa and buckwheat showed significantly different metabolomic profiles compared with other coarse cereals. Analysis of the accumulation patterns of common nutritional metabolites among six coarse cereals, we found that the accumulation of carbohydrates follows a conserved pattern in the six coarse cereals, while those of amino acids, vitamins, flavonoids, and lipids were complementary. Furthermore, the species-specific metabolites in each coarse cereal were identified, and the neighbor-joining tree for the six coarse cereals was constructed based on the metabolome data. Since sorghum contains more species-specific metabolites and occupies a unique position on the neighbor-joining tree, the metabolite differences between grain sorghum 654 and sweet sorghum LTR108 were finally compared specifically, revealing that LTR108 contained more flavonoids and had higher antioxidant activity than 654. Our work supports an overview understanding of nutrient value in different coarse cereals, which provides the metabolomic evidence for the healthy diet. Additionally, the superior antioxidant activity of sweet sorghum provides clues for its targeted uses.
Collapse
Affiliation(s)
- Yao Zhao
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs, Key Laboratory of Biotechnology in Plant Protection of Zhejiang Province, Hangzhou 310021, China
| | - Guowei Zhai
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xuetong Li
- Central Laboratory, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Han Tao
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs, Key Laboratory of Biotechnology in Plant Protection of Zhejiang Province, Hangzhou 310021, China
| | - Linying Li
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs, Key Laboratory of Biotechnology in Plant Protection of Zhejiang Province, Hangzhou 310021, China
| | - Yuqing He
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs, Key Laboratory of Biotechnology in Plant Protection of Zhejiang Province, Hangzhou 310021, China
| | - Xueying Zhang
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs, Key Laboratory of Biotechnology in Plant Protection of Zhejiang Province, Hangzhou 310021, China
| | - Fulin Wang
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Gaojie Hong
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs, Key Laboratory of Biotechnology in Plant Protection of Zhejiang Province, Hangzhou 310021, China
| | - Ying Zhu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|
8
|
Ahmed SAJA, Bapatdhar N, Kumar BP, Ghosh S, Yachie A, Palaniappan SK. Large scale text mining for deriving useful insights: A case study focused on microbiome. Front Physiol 2022; 13:933069. [PMID: 36117696 PMCID: PMC9473635 DOI: 10.3389/fphys.2022.933069] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 07/18/2022] [Indexed: 11/23/2022] Open
Abstract
Text mining has been shown to be an auxiliary but key driver for modeling, data harmonization, and interpretation in bio-medicine. Scientific literature holds a wealth of information and embodies cumulative knowledge and remains the core basis on which mechanistic pathways, molecular databases, and models are built and refined. Text mining provides the necessary tools to automatically harness the potential of text. In this study, we show the potential of large-scale text mining for deriving novel insights, with a focus on the growing field of microbiome. We first collected the complete set of abstracts relevant to the microbiome from PubMed and used our text mining and intelligence platform Taxila for analysis. We drive the usefulness of text mining using two case studies. First, we analyze the geographical distribution of research and study locations for the field of microbiome by extracting geo mentions from text. Using this analysis, we were able to draw useful insights on the state of research in microbiome w. r.t geographical distributions and economic drivers. Next, to understand the relationships between diseases, microbiome, and food which are central to the field, we construct semantic relationship networks between these different concepts central to the field of microbiome. We show how such networks can be useful to derive useful insight with no prior knowledge encoded.
Collapse
Affiliation(s)
| | | | | | - Samik Ghosh
- SBX Corporation Inc., Tokyo, Japan
- The NLP Group, The Systems Biology Institute, Tokyo, Japan
| | - Ayako Yachie
- SBX Corporation Inc., Tokyo, Japan
- The NLP Group, The Systems Biology Institute, Tokyo, Japan
| | - Sucheendra K. Palaniappan
- SBX Corporation Inc., Tokyo, Japan
- The NLP Group, The Systems Biology Institute, Tokyo, Japan
- *Correspondence: Sucheendra K. Palaniappan,
| |
Collapse
|
9
|
Effects of Oats, Tartary Buckwheat, and Foxtail Millet Supplementation on Lipid Metabolism, Oxido-Inflammatory Responses, Gut Microbiota, and Colonic SCFA Composition in High-Fat Diet Fed Rats. Nutrients 2022; 14:nu14132760. [PMID: 35807940 PMCID: PMC9268892 DOI: 10.3390/nu14132760] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/25/2022] [Accepted: 06/29/2022] [Indexed: 02/07/2023] Open
Abstract
Coarse cereals rich in polyphenols, dietary fiber, and other functional components exert multiple health benefits. We investigated the effects of cooked oats, tartary buckwheat, and foxtail millet on lipid profile, oxido-inflammatory responses, gut microbiota, and colonic short-chain fatty acids composition in high-fat diet (HFD) fed rats. Rats were fed with a basal diet, HFD, oats diet (22% oat in HFD), tartary buckwheat diet (22% tartary buckwheat in HFD), and foxtail millet diet (22% foxtail millet in HFD) for 12 weeks. Results demonstrated that oats and tartary buckwheat attenuated oxidative stress and inflammatory responses in serum, and significantly increased the relative abundance of Lactobacillus and Romboutsia in colonic digesta. Spearman’s correlation analysis revealed that the changed bacteria were strongly correlated with oxidative stress and inflammation-related parameters. The concentration of the butyrate level was elevated by 2.16-fold after oats supplementation. In addition, oats and tartary buckwheat significantly downregulated the expression of sterol regulatory element-binding protein 2 and peroxisome proliferator-activated receptors γ in liver tissue. In summary, our results suggested that oats and tartary buckwheat could modulate gut microbiota composition, improve lipid metabolism, and decrease oxidative stress and inflammatory responses in HFD fed rats. The present work could provide scientific evidence for developing coarse cereals-based functional food for preventing hyperlipidemia.
Collapse
|
10
|
Beneficial Effects of Three Dietary Cyclodextrins on Preventing Fat Accumulation and Remodeling Gut Microbiota in Mice Fed a High-Fat Diet. Foods 2022; 11:foods11081118. [PMID: 35454706 PMCID: PMC9031782 DOI: 10.3390/foods11081118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/02/2022] [Accepted: 04/08/2022] [Indexed: 11/23/2022] Open
Abstract
Globally, obesity and its metabolic complications, which are intimately linked to diet, are major public health problems. Cyclodextrins (CDs) are cyclic oligosaccharides consisting of (α-1,4)-linked D-glucopyranose units that can reduce fat bioavailability and affect metabolism by improving intestinal flora as prebiotics. We compared the effects of three CDs on preventing fat accumulation and remodeling gut microbiota in a high-fat diet-fed C57BL/6J mouse model. α-CD maximized energy expenditure by 12.53%, caused the RER value to drop from 0.814 to 0.788, and increased the proportion of fatty acid oxidation for energy supply. β-CD supplementation resulted in a marked 24.53% reduction in weight gain and a decrease in epididymal-fat-relative weight from 3.76% to 2.09%. It also minimized ectopic fat deposition and improved blood lipid parameters. γ-CD maximized the concentration of SCFAs in the cecum from 6.29 to 15.31 μmol/g. All three CDs reduced the abundance ratio of Firmicutes and Bacteroidetes to a low-fat diet level, increased the abundance of Lactobacillus and Akkermansia, and reduced the abundance of Allobaculum and Ruminococcus. These findings imply that a combination of multiple CDs may exert superior effects as a potential strategy for obesity prevention.
Collapse
|