1
|
Cascos G, Montero-Fernández I, Marcía-Fuentes JA, Aleman RS, Ruiz-Canales A, Martín-Vertedor D. Electronic Prediction of Chemical Contaminants in Aroma of Brewed Roasted Coffee and Quantification of Acrylamide Levels. Foods 2024; 13:768. [PMID: 38472880 DOI: 10.3390/foods13050768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/17/2024] [Accepted: 02/25/2024] [Indexed: 03/14/2024] Open
Abstract
The aim of this research was to apply an electronic device as indirect predictive technology to evaluate toxic chemical compounds in roasted espresso coffee. Fresh coffee beans were subjected to different thermal treatments and analyzed to determine volatile organic compounds, content of acrylamide and 5-hydroxymethylfurfural, sensory characteristics and electronic nose data. In total, 70 different volatile compounds were detected and grouped into 15 chemical families. The greatest percentage of these compounds were furans, pyrazines, pyridines and aldehydes. The positive aroma detected had the intensity of coffee odor and a roasted aroma, whereas the negative aroma was related to a burnt smell. A linear relationship between the toxic substances and the sensory defect was established. A high sensory defect implied a lower content of acrylamide and a higher content of 5-hydroxymethylfurfural. Finally, electronic signals were also correlated with the sensory defect. This relationship allowed us to predict the presence of these contaminants in the roasted coffee beverage with an indirect method by using this electronic device. Thus, this device may be useful to indirectly evaluate the chemical contaminants in coffee beverages according to their sensory characteristics.
Collapse
Affiliation(s)
- Gema Cascos
- Technological Institute of Food and Agriculture (CICYTEX-INTAEX), Junta of Extremadura, Avda. Adolfo Suárez, s/n, 06007 Badajoz, Spain
| | - Ismael Montero-Fernández
- Department of Chemical Engineering and Physical Chemistry, Area of Chemical Engineering, Faculty of Sciences, University of Extremadura, Avda. de Elvas, s/n, 06006 Badajoz, Spain
| | | | - Ricardo S Aleman
- School of Nutrition and Food Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA
| | - Antonio Ruiz-Canales
- Engineering Department, Polytechnic High School of Orihuela, Miguel Hernández University of Elche, 03312 Orihuela, Spain
| | - Daniel Martín-Vertedor
- Technological Institute of Food and Agriculture (CICYTEX-INTAEX), Junta of Extremadura, Avda. Adolfo Suárez, s/n, 06007 Badajoz, Spain
| |
Collapse
|
2
|
Tsoungos A, Pemaj V, Slavko A, Kapolos J, Papadelli M, Papadimitriou K. The Rising Role of Omics and Meta-Omics in Table Olive Research. Foods 2023; 12:3783. [PMID: 37893676 PMCID: PMC10606081 DOI: 10.3390/foods12203783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/05/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Table olives are often the result of fermentation, a process where microorganisms transform raw materials into the final product. The microbial community can significantly impact the organoleptic characteristics and safety of table olives, and it is influenced by various factors, including the processing methods. Traditional culture-dependent techniques capture only a fraction of table olives' intricate microbiota, prompting a shift toward culture-independent methods to address this knowledge gap. This review explores recent advances in table olive research through omics and meta-omics approaches. Genomic analysis of microorganisms isolated from table olives has revealed multiple genes linked to technological and probiotic attributes. An increasing number of studies concern metagenomics and metabolomics analyses of table olives. The former offers comprehensive insights into microbial diversity and function, while the latter identifies aroma and flavor determinants. Although proteomics and transcriptomics studies remain limited in the field, they have the potential to reveal deeper layers of table olives' microbiome composition and functionality. Despite the challenges associated with implementing multi-omics approaches, such as the reliance on advanced bioinformatics tools and computational resources, they hold the promise of groundbreaking advances in table olive processing technology.
Collapse
Affiliation(s)
- Anastasios Tsoungos
- Department of Food Science and Technology, University of the Peloponnese, 24100 Kalamata, Greece; (A.T.); (V.P.); (A.S.); (J.K.); (M.P.)
| | - Violeta Pemaj
- Department of Food Science and Technology, University of the Peloponnese, 24100 Kalamata, Greece; (A.T.); (V.P.); (A.S.); (J.K.); (M.P.)
| | - Aleksandra Slavko
- Department of Food Science and Technology, University of the Peloponnese, 24100 Kalamata, Greece; (A.T.); (V.P.); (A.S.); (J.K.); (M.P.)
| | - John Kapolos
- Department of Food Science and Technology, University of the Peloponnese, 24100 Kalamata, Greece; (A.T.); (V.P.); (A.S.); (J.K.); (M.P.)
| | - Marina Papadelli
- Department of Food Science and Technology, University of the Peloponnese, 24100 Kalamata, Greece; (A.T.); (V.P.); (A.S.); (J.K.); (M.P.)
| | - Konstantinos Papadimitriou
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| |
Collapse
|
3
|
Cascos G, Barea-Ramos JD, Montero-Fernández I, Ruiz-Canales A, Lozano J, Martín-Vertedor D. Burn Defect and Phenol Prediction for Flavoured Californian-Style Black Olives Using Digital Sensors. Foods 2023; 12:foods12071377. [PMID: 37048198 PMCID: PMC10093727 DOI: 10.3390/foods12071377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 04/14/2023] Open
Abstract
Californian-style black olives can undergo different chemical changes during the sterilization process that can affect their sensory and phenol characteristics. Thus, these olives were stuffed with flavoured hydrocolloids and submitted to different thermal sterilization treatments to assess sensory categories. The triangular test indicated that the panellists were able to discriminate between samples from different categories according to their aromas with more than 85% success. The results indicated that the negative aroma detected by tasters was related to burn defects. The highest level of defects was found in standard olives, while the lowest was identified in the extra category. Furthermore, olives submitted to the lowest thermal sterilization treatment (extra) presented significantly higher phenol profile content, such as for hydroxytyrosol, tyrosol, oleuropein and procyanidin B1. The electronic nose (E-nose) discriminated between samples from different categories according to the specific aroma (PC1 = 82.1% and PC2 = 15.1%). The PLS-DA classified the samples with 90.9% accuracy. Furthermore, the volatile organic compounds responsible for this discrimination were creosol, copaene, benzaldehyde and diallyl disulphide. Finally, the models established by the PLS analysis indicated that the E-nose could predict olives according to their aroma and total phenol profile (RCV2 values were 0.89 and 0.92, respectively). Thus, this device could be used at the industrial level to discriminate between olives with different sensory aromas to determine those with the highest quality.
Collapse
Affiliation(s)
- Gema Cascos
- Technological Institute of Food and Agriculture (CICYTEX-INTAEX), Junta of Extremadura, Avda. Adolfo Suárez s/n, 06007 Badajoz, Spain
| | - Juan Diego Barea-Ramos
- Technological Institute of Food and Agriculture (CICYTEX-INTAEX), Junta of Extremadura, Avda. Adolfo Suárez s/n, 06007 Badajoz, Spain
| | - Ismael Montero-Fernández
- Department of Chemical Engineering and Physical Chemistry, Area of Chemical Engineering, Faculty of Sciences, University of Extremadura, Avda. de Elvas, s/n, 06006 Badajoz, Spain
| | - Antonio Ruiz-Canales
- Engineering Department, Miguel Hernández University of Elche, Politechnic High School of Orihuela, 03312 Elche, Spain
| | - Jesús Lozano
- Industrial Engineering School, University of Extremadura, 06006 Badajoz, Spain
| | - Daniel Martín-Vertedor
- Technological Institute of Food and Agriculture (CICYTEX-INTAEX), Junta of Extremadura, Avda. Adolfo Suárez s/n, 06007 Badajoz, Spain
| |
Collapse
|
4
|
Mechi D, Baccouri B, Martín-Vertedor D, Abaza L. Bioavailability of Phenolic Compounds in Californian-Style Table Olives with Tunisian Aqueous Olive Leaf Extracts. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020707. [PMID: 36677765 PMCID: PMC9866685 DOI: 10.3390/molecules28020707] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023]
Abstract
Recent advances in biotechnology have ensured that one of the main olive tree by-products is olive leaf extract (OLE), a rich source in bioactive compounds. The aim of this work was to study the phenolic composition in different OLEs of three Tunisian varieties, namely, 'Sayali', 'Tkobri', and 'Neb Jmel'. The in vitro biodigestibility effect after 'Sayali' OLE addition to Californian-style 'Hojiblanca' table olives was also studied. This OLE contained bioactive molecules such as hydroxytyrosol, tyrosol, oleropeine, Procianidine B1 (PB1), and p-cumaric acid. These compounds were also found in fresh olives after OLE was added. Furthermore, from fresh extract to oral digestion, the detected amount of bioavailable phenol was higher; however, its content decreased according to each phase of gastric and intestinal digestion. In the final digestion phase, the number of phenols found was lower than that of fresh olives. In addition, the phenolic content of Californian-style 'Hojiblanca' table olives decreased during the in vitro digestion process. The antioxidant activity of this variety decreased by 64% and 88% after gastrointestinal digestion, being the highest antioxidant capacity found in both simulated gastric and intestinal fluid, respectively. The results show us that the 'Sayali' variety is rich in phenolic compounds that are bioavailable after digestion, which could be used at an industrial level due to the related health benefits.
Collapse
Affiliation(s)
- Dalel Mechi
- Laboratory of Olive Biotechnology, Centre of Biotechnology of Borj-Cedria (CBBC), Hammam-Lif 2050, Tunisia
- Department of Biology, The Faculty of Science of Bizerte, University of Carthage, Zarzouna 7021, Tunisia
| | - Bechir Baccouri
- Laboratory of Olive Biotechnology, Centre of Biotechnology of Borj-Cedria (CBBC), Hammam-Lif 2050, Tunisia
| | - Daniel Martín-Vertedor
- Technological Institute of Food and Agriculture (CICYTEX-INTAEX), Junta of Extremadura, 06007 Badajoz, Spain
- Correspondence: ; Tel.: +34-924-012-664
| | - Leila Abaza
- Laboratory of Olive Biotechnology, Centre of Biotechnology of Borj-Cedria (CBBC), Hammam-Lif 2050, Tunisia
| |
Collapse
|
5
|
Mechi D, Pérez-Nevado F, Montero-Fernández I, Baccouri B, Abaza L, Martín-Vertedor D. Evaluation of Tunisian Olive Leaf Extracts to Reduce the Bioavailability of Acrylamide in Californian-Style Black Olives. Antioxidants (Basel) 2023; 12:antiox12010117. [PMID: 36670979 PMCID: PMC9854615 DOI: 10.3390/antiox12010117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/28/2022] [Accepted: 12/30/2022] [Indexed: 01/05/2023] Open
Abstract
The aim of this work was analyzing the use of olive leaf extracts (OLE) obtained from two local Tunisian olive tree cultivars 'Chemlali' and 'Sayali' to reduce the acrylamide in Californian-style black olives. The phenol profile, antioxidant, and antibacterial activity of the two OLE extracts were evaluated. The principal phenols found were hydroxytyrosol (1809.6 ± 25.3 mg 100 g-1), oleuropein (2662.2 ± 38 mg 100 g-1) and luteolin-7-O-glucoside (438.4 ± 38 mg 100 g-1) presented higher levels in 'Sayali' variety. Small differences were observed between the two kinds of extracts used; the greatest activity of OLE was observed against S. choleraesuis, with values up to 50% inhibition. The extract of 'Chemlali' cultivar was added to the Californian-style table olive, improving its phenol content and its antioxidant characteristics without negatively affecting its sensorial characteristics; these olives showed the highest firmness and proper quality characteristics. The gastrointestinal activity on the acrylamide concentration showed a partial degradation of this compound through the digestion, although the addition of the extract does not seem influence in its gastrointestinal digestion. These findings prove the usefulness of by-products to generate a high-quality added-value product, and this would also be relevant as a step towards a more sustainable, circular economy model.
Collapse
Affiliation(s)
- Dalel Mechi
- Laboratory of Olive Biotechnology, Centre of Biotechnology of Borj-Cedria (CBBC), Hammam-Lif 2050, Tunisia
- Faculty of Science of Bizerte, University of Carthage, Zarzouna 7021, Tunisia
| | - Francisco Pérez-Nevado
- Área de Nutrición y Bromatología, Departamento de Producción Animal y Ciencia de los Alimentos, Escuela de Ingenierías Agrarias, Universidad de Extremadura, Avda. Adolfo Suárez s/n, 06007 Badajoz, Spain
- Correspondence: (F.P.-N.); (D.M.-V.); Tel.: +34-924-012-664 (D.M.-V.)
| | - Ismael Montero-Fernández
- Technological Institute of Food and Agriculture (CICYTEX-INTAEX), Junta of Extremadura, Avda. Adolfo Suárez s/n, 06007 Badajoz, Spain
| | - Bechir Baccouri
- Laboratory of Olive Biotechnology, Centre of Biotechnology of Borj-Cedria (CBBC), Hammam-Lif 2050, Tunisia
| | - Leila Abaza
- Laboratory of Olive Biotechnology, Centre of Biotechnology of Borj-Cedria (CBBC), Hammam-Lif 2050, Tunisia
| | - Daniel Martín-Vertedor
- Technological Institute of Food and Agriculture (CICYTEX-INTAEX), Junta of Extremadura, Avda. Adolfo Suárez s/n, 06007 Badajoz, Spain
- Correspondence: (F.P.-N.); (D.M.-V.); Tel.: +34-924-012-664 (D.M.-V.)
| |
Collapse
|
6
|
Barea-Ramos JD, Cascos G, Mesías M, Lozano J, Martín-Vertedor D. Evaluation of the Olfactory Quality of Roasted Coffee Beans Using a Digital Nose. SENSORS (BASEL, SWITZERLAND) 2022; 22:8654. [PMID: 36433248 PMCID: PMC9692873 DOI: 10.3390/s22228654] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/05/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
The roasting process is one of the critical points to obtain a product of the highest quality with certain sensorial properties including the aroma of coffee. Samples of coffee beans were roasted at different thermal treatment intensities with the aim of obtaining aromatic compounds detected with an electronic device. Sensory analysis, volatile compound profiling, and electronic nose analysis were carried out. Through principal component analysis (95.8% of the total variance of the data was explained by PC1 and PC2) and partial least squares discriminant analysis (the sum of the diagonal elements gave a hit rate of 94%), it could be demonstrated that the E-nose is able to discriminate roasted coffee beans subjected to different thermal treatments. Aromatic profiling was carried out by a testing panel and volatile compounds (VOCs) for the discrimination of roasted coffee samples. Alcohols, aromatics, esters, ketones and furanone were found in higher proportions in samples at the lowest thermal treatment. The VOCs with positive attributes were 1-(4-nitrophenyl)-3-phenylamino-propenone, carboxylic acids, 2-methoxy-4-vinylphenol, and 2-phenylethyl alcohol, while the compounds with negative ones were 2-methyl-furan, 2,5-dimethyl-pyridine, 2-methyl-butanal, and 2-furfurylthiol. The PLS model allows for the quantification of the positive and negative aromas (RCV2 = 0.92) of roasted coffee by using the E-nose. Therefore, the E-nose, that is, an inexpensive and nondestructive instrument, could be a chemometric tool able to discriminate between different qualities of coffee during processing.
Collapse
Affiliation(s)
- Juan Diego Barea-Ramos
- Technological Institute of Food and Agriculture (CICYTEX-INTAEX), Junta of Extremadura, Avda. Adolfo Suárez s/n, 06007 Badajoz, Spain
| | - Gema Cascos
- Technological Institute of Food and Agriculture (CICYTEX-INTAEX), Junta of Extremadura, Avda. Adolfo Suárez s/n, 06007 Badajoz, Spain
| | - Marta Mesías
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Jose Antonio Novais 10, 28040 Madrid, Spain
| | - Jesús Lozano
- Industrial Engineering School, University of Extremadura, Avda. de Elvas s/n, 06006 Badajoz, Spain
| | - Daniel Martín-Vertedor
- Technological Institute of Food and Agriculture (CICYTEX-INTAEX), Junta of Extremadura, Avda. Adolfo Suárez s/n, 06007 Badajoz, Spain
| |
Collapse
|