1
|
Maung AT, Abdelaziz MNS, Noor Mohammadi T, Lwin SZC, El-Telbany M, Zhao J, Wang C, Lin Y, Shen C, Zayda M, Masuda Y, Honjoh KI, Miyamoto T. Single and combined application of bacteriophage and cinnamon oils against pathogenic Listeria monocytogenes in milk and smoked salmon. Int J Food Microbiol 2024; 421:110797. [PMID: 38878706 DOI: 10.1016/j.ijfoodmicro.2024.110797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/04/2024] [Accepted: 06/10/2024] [Indexed: 07/06/2024]
Abstract
Nowadays, the discovery of alternative natural antimicrobial substances such as bacteriophages, essential oils, and other physical and chemical agents is developing in the food industry. In this study, nine bacteriophages were isolated from various parts of raw chickens and exhibited lytic activities against L. monocytogenes and various Listeria spp. The characterization of phage vB_LmoS-PLM9 was stable at 4 to 50 °C and pH range from 4 to 10. Phage vB_LmoS-PLM9 had a circular, double-stranded genomic DNA with 38,345 bp having endolysin but no antibiotic resistance or virulence genes. Among the eight essential oils tested at 10 %, cinnamon bark, and cassia oils showed the strongest antilisterial activities. The combined use of phage vB_LmoS-PLM9 and cinnamon oils indicated higher efficiency than single treatments. The combination of phage (MOI of 10) and both cinnamon oils (0.03 %) reduced the viable counts of L. monocytogenes and inhibited the regrowth of resistant cell populations in broth at 30 °C. Furthermore, treatment with the combination of phage (MOI of 100) and cinnamon oil (0.125 %) was effective in milk, especially at 4 °C by reducing the viable count to less than lower limit of detection. These results suggest combining phage and cinnamon oil is a potential approach for controlling L. monocytogenes in milk.
Collapse
Affiliation(s)
- Aye Thida Maung
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; Department of Animal Science, University of Veterinary Science, Yezin, Nay Pyi Taw, Myanmar
| | - Marwa Nabil Sayed Abdelaziz
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | | | - Su Zar Chi Lwin
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Mohamed El-Telbany
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Junxin Zhao
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Chen Wang
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yunzhi Lin
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Cunkuan Shen
- College of Biological and Environmental Science, Zhejiang Wanli University, Ningbo, Zhejiang 315100, China
| | - Mahmoud Zayda
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Monofiya Governorate, Egypt
| | - Yoshimitsu Masuda
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Ken-Ichi Honjoh
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Takahisa Miyamoto
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| |
Collapse
|
2
|
Kostoglou D, Simoni M, Vafeiadis G, Kaftantzis NM, Giaouris E. Prevalence of Campylobacter spp., Salmonella spp., and Listeria monocytogenes, and Population Levels of Food Safety Indicator Microorganisms in Retail Raw Chicken Meat and Ready-To-Eat Fresh Leafy Greens Salads Sold in Greece. Foods 2023; 12:4502. [PMID: 38137306 PMCID: PMC10742679 DOI: 10.3390/foods12244502] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023] Open
Abstract
The presence of microbial pathogens in foods compromises their safety resulting in foodborne illnesses, public health disorders, product recalls, and economic losses. In this work, 60 samples of chilled raw chicken meat and 40 samples of packaged ready-to-eat (RTE) fresh leafy greens salads, sold in Greek retail stores (butchers and supermarkets), were analyzed for the presence of three important foodborne pathogenic bacteria, i.e., Campylobacter spp., Salmonella spp., and Listeria monocytogenes, following the detection protocols of the International Organization for Standardization (ISO). In parallel, the total aerobic plate count (APC), Enterobacteriaceae, total coliforms, Escherichia coli, and staphylococci were also enumerated as hygiene (safety) indicator organisms. When present, representative typical colonies for each pathogen were biochemically verified, following the ISO guidelines. At the same time, all the Campylobacter isolates from chicken (n = 120) were identified to the species level and further phylogenetically discriminated through multiplex and repetitive sequence-based (rep) polymerase chain reaction (PCR) methods, respectively. Concerning raw chicken, Campylobacter spp. were recovered from 54 samples (90.0%) and Salmonella spp. were recovered from 9 samples (15.0%), while L. monocytogenes was present in 35 samples (58.3%). No Campylobacter was recovered from salads, and Salmonella was present in only one sample (2.5%), while three salads were found to be contaminated with L. monocytogenes (7.5%). The 65% of the Campylobacter chicken isolates belonged to C. jejuni, whereas the rest, 35%, belonged to C. coli. Alarmingly, APC was equal to or above 106 CFU/g in 53.3% and 95.0% of chicken and salad samples, respectively, while the populations of some of the other safety indicators were in some cases also high. In sum, this study unravels high occurrence percentages for some pathogenic and food safety indicator microorganisms in raw chicken meat and RTE fresh leafy greens salads sold in Greek retail, highlighting the need for more extensive microbiological control throughout the food production chain (from the farm/field to the market).
Collapse
Affiliation(s)
| | | | | | | | - Efstathios Giaouris
- Laboratory of Food Microbiology and Hygiene, Department of Food Science and Nutrition, School of the Environment, University of the Aegean, 81400 Myrina, Lemnos, Greece; (D.K.)
| |
Collapse
|
3
|
Novel Approaches to Environmental Monitoring and Control of Listeria monocytogenes in Food Production Facilities. Foods 2022; 11:foods11121760. [PMID: 35741961 PMCID: PMC9222551 DOI: 10.3390/foods11121760] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/06/2022] [Accepted: 06/10/2022] [Indexed: 11/20/2022] Open
Abstract
Listeria monocytogenes is a serious public health hazard responsible for the foodborne illness listeriosis. L. monocytogenes is ubiquitous in nature and can become established in food production facilities, resulting in the contamination of a variety of food products, especially ready-to-eat foods. Effective and risk-based environmental monitoring programs and control strategies are essential to eliminate L. monocytogenes in food production environments. Key elements of the environmental monitoring program include (i) identifying the sources and prevalence of L. monocytogenes in the production environment, (ii) verifying the effectiveness of control measures to eliminate L. monocytogenes, and (iii) identifying the areas and activities to improve control. The design and implementation of the environmental monitoring program are complex, and several different approaches have emerged for sampling and detecting Listeria monocytogenes in food facilities. Traditional detection methods involve culture methods, followed by confirmation methods based on phenotypic, biochemical, and immunological characterization. These methods are laborious and time-consuming as they require at least 2 to 3 days to obtain results. Consequently, several novel detection approaches are gaining importance due to their rapidness, sensitivity, specificity, and high throughput. This paper comprehensively reviews environmental monitoring programs and novel approaches for detection based on molecular methods, immunological methods, biosensors, spectroscopic methods, microfluidic systems, and phage-based methods. Consumers have now become more interested in buying food products that are minimally processed, free of additives, shelf-stable, and have a better nutritional and sensory value. As a result, several novel control strategies have received much attention for their less adverse impact on the organoleptic properties of food and improved consumer acceptability. This paper reviews recent developments in control strategies by categorizing them into thermal, non-thermal, biocontrol, natural, and chemical methods, emphasizing the hurdle concept that involves a combination of different strategies to show synergistic impact to control L. monocytogenes in food production environments.
Collapse
|
4
|
Cai J, Wang S, Gao Y, Wang Q. Antibacterial Activity and Mechanism of Polygonum orientale L. Essential Oil against Pectobacterium carotovorum subsp. carotovorum. Foods 2022; 11:foods11111585. [PMID: 35681334 PMCID: PMC9180537 DOI: 10.3390/foods11111585] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/20/2022] [Accepted: 05/25/2022] [Indexed: 11/16/2022] Open
Abstract
Infected by Pectobacterium carotovorum subsp. carotovorum (Pcc), the quality of Chinese cabbage could severely decline. Using chemical bactericides to control Pcc could cause food safety problems. Thus, we investigated the optimum extraction conditions, antibacterial activity, chemical compounds and antibacterial mechanism of Polygonum orientale L. essential oil (POEO) against Pcc in order to search a new way to control Pcc. The optimum extraction conditions of POEO (soaking time 2.6 h, extraction time 7.7 h and ratio of liquid to solid 10.3 mL/g) were optimized by response surface methodology. The minimum inhibitory concentration (MIC) of POEO against Pcc was 0.625 mg/mL. The control efficiency of protective activity of POEO against Pcc was 74.67~92.67%, and its curative activity was 76.00~93.00%. Then, 29 compounds were obtained by GC-MS; the prime compounds of POEO were phytol, phytone, n-pentacosane, 1-octen-3-ol and β-ionone. It was verified that, compared with control samples, POEO destroyed cell morphology. It increased surface potential, increased hydrophobicity, damaged cell walls, destroyed the integrity and permeability of cell membrane, reduced membrane potential (MP), and changed membrane protein conformation. It inhibited the activities of pyruvate kinase (PK), succinate dehydrogenase (SDH) and adenosine triphosphatase (ATPase). Briefly, the results of this study demonstrate that POEO showed effective inhibitory activity against Pcc, thus POEO could have potential application in controlling Pcc.
Collapse
Affiliation(s)
- Jin Cai
- Institute of Applied Chemistry, Shanxi University, No. 92 Wucheng Road, Taiyuan 030006, China
- Correspondence:
| | - Shiqin Wang
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, No. 92 Wucheng Road, Taiyuan 030006, China;
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92 Wucheng Road, Taiyuan 030006, China
| | - Yichen Gao
- School of Life Science, Shanxi University, No. 92 Wucheng Road, Taiyuan 030006, China; (Y.G.); (Q.W.)
| | - Qi Wang
- School of Life Science, Shanxi University, No. 92 Wucheng Road, Taiyuan 030006, China; (Y.G.); (Q.W.)
| |
Collapse
|