1
|
Shao L, He X, Li J, Wang Q, Shi L, Wu W, Chen W, Yang Z, Li S. Ethylene response factor AeABR1 regulates chlorophyll degradation in post-harvest okras. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 222:109772. [PMID: 40090074 DOI: 10.1016/j.plaphy.2025.109772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/07/2025] [Accepted: 03/09/2025] [Indexed: 03/18/2025]
Abstract
Chlorophyll degradation, marked by the loss of green color, is a prominent feature of okra storage after harvest, posing challenges for its storage, transportation, and marketability. In order to investigate the regulatory mechanisms of chlorophyll degradation in okras, we isolated and characterized AeABR1, a repressor of abscisic acid (ABA) that belongs to the ethylene-responsive element-binding factor (ERF/AP2) superfamily of ERF transcription factors. The transcriptional levels of AeABR1 during storage were closely linked to the degreening of okra fruit (R-values ranging from -0.714 to -0.516, P < 0.05) and the production of ethylene (R = -0.362, P < 0.05). Subcellular localization analysis revealed that AeABR1 was mostly located in the nucleus. Functional studies demonstrated that the transient expression of AeABR1 induced rapid chlorophyll degradation in the leaves of okra and N. benthamiana. Similar results were observed in transgenic Arabidopsis seedlings expressing AeABR1, which exhibited yellowing growth phenotypes, reduced chlorophyll content, and elevated chlorophyll catabolic genes (CCGs) expression levels. AeABR1 substantially induced the activities of AeCLH1 promoters. These findings indicated that AeABR1 may act as an activator of AeCLH1 genes and an accelerator of chlorophyll degradation in post-harvest okras.
Collapse
Affiliation(s)
- Lingyu Shao
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100, China
| | - Xin He
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100, China
| | - Jiahao Li
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100, China
| | - Qian Wang
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100, China
| | - Liyu Shi
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100, China
| | - Wei Wu
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100, China
| | - Wei Chen
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100, China
| | - Zhenfeng Yang
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100, China.
| | - Saisai Li
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100, China.
| |
Collapse
|
2
|
Zhao Y, Yan M, Zhang K, Wu X, Wang Z, Shao T, Lei J, Chen X, Liu H. Effects of 1-Methylcyclopropene Treatment on Postharvest Quality and Metabolism of Different Kiwifruit Varieties. Foods 2024; 13:3632. [PMID: 39594051 PMCID: PMC11593305 DOI: 10.3390/foods13223632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/07/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
The kiwifruit (Actinidia) is an important nutritional and economic fruit crop. However, the short edible window period of kiwifruit has seriously affected its market value. 1-Methylcyclopropene (1-MCP), as a novel ethylene inhibitor, is widely applied to delay fruit ripening and senescence. To our knowledge, there are limited studies on the effects of 1-MCP on fruit quality and metabolism of different kiwifruit varieties. Three kiwifruit cultivars (i.e., 'Xuxiang', 'Huayou', and 'Hayward') widely cultivated in China were chosen as our research objects. The variations of storage quality and metabolic characteristics of kiwifruits treated with various 1-MCP concentration (0 μL/L, 0.5 μL/L, and 1.0 μL/L) were systematically investigated. The results showed that 1-MCP treatment significantly improved the quality of kiwifruit during storage. Among them, for 'Xuxiang' and 'Hayward' varieties, 1.0 μL/L 1-MCP treatment could delay the decrease in fruit firmness, the increase in maturity index and cellulase activity, and inhibit the decrease in ascorbic acid (AsA) level. However, the 0.5 μL/L 1-MCP had a great influence on the chlorophyll content and maturity index of the 'Huayou' cultivar, and the preservation effect was satisfactory. In addition, gas chromatography-mass spectrometry (GC-MS) based metabolomics studies revealed that 1-MCP treatment affected carbohydrates metabolism, fatty acids metabolism, and amino acids metabolism in different kiwifruit varieties. Correlation analysis indicated that sugars metabolism has the closest relationship with postharvest physiological quality. This research indicated that the effectiveness of 1-MCP treatments was dependent on fruit variety and treatment concentration. Furthermore, these findings provide a theoretical foundation for extending the shelf life of different kiwifruit varieties.
Collapse
Affiliation(s)
- Yanni Zhao
- School of Food Science and Engineering, Shaanxi University of Science & Technology, Xi’an 710021, China
- Shaanxi Research Institute of Agricultural Products Processing Technology, Xi’an 710021, China
| | - Meiru Yan
- School of Food Science and Engineering, Shaanxi University of Science & Technology, Xi’an 710021, China
| | - Kun Zhang
- School of Food Science and Engineering, Shaanxi University of Science & Technology, Xi’an 710021, China
| | - Xuan Wu
- School of Food Science and Engineering, Shaanxi University of Science & Technology, Xi’an 710021, China
| | - Zi Wang
- School of Food Science and Engineering, Shaanxi University of Science & Technology, Xi’an 710021, China
| | - Ting Shao
- School of Food Science and Engineering, Shaanxi University of Science & Technology, Xi’an 710021, China
| | - Jing Lei
- Shaanxi Rural Science and Technology Development Center, Xi’an 710054, China
| | - Xuefeng Chen
- School of Food Science and Engineering, Shaanxi University of Science & Technology, Xi’an 710021, China
- Shaanxi Research Institute of Agricultural Products Processing Technology, Xi’an 710021, China
| | - Huan Liu
- School of Food Science and Engineering, Shaanxi University of Science & Technology, Xi’an 710021, China
- Shaanxi Research Institute of Agricultural Products Processing Technology, Xi’an 710021, China
| |
Collapse
|
3
|
The Efficiency of Lemon Essential Oil-Based Nanoemulsions on the Inhibition of Phomopsis sp. and Reduction of Postharvest Decay of Kiwifruit. Foods 2022; 11:foods11101510. [PMID: 35627080 PMCID: PMC9140209 DOI: 10.3390/foods11101510] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 02/04/2023] Open
Abstract
Essential oils (EOs) have excellent antibacterial activity and are generally recognized as safe (GRAS) for use in food preservatives. However, the application of EOs is limited because of their strong volatility and easily oxidized. Encapsulation of EOs into nanoemulsions could effectively prevent oxidative deterioration. In this study, lemon essential oil-based nanoemulsion (LEO/NE) was prepared by high-pressure homogenization. FT-IR and encapsulation efficiency analysis indicated that LEO was effectively encapsulated in the nanoemulsion. The results of zeta potential changes after 35 d storage indicated that LEO/NE exhibits good stability at room temperature. The effect of LEO/NE on the main soft rot pathogens of kiwifruit Phomopsis sp. was investigated, and the results showed that LEO/NE significantly inhibited spore germination and mycelia growth of Phomopsis sp. by promoting ROS accumulation, intracellular antioxidant enzyme activities, and cell apoptosis. The preservation experiment was carried out by inoculating Phomopsis sp. spores into fresh kiwifruit, and the LEO/NE effectively inhibited soft rot development in kiwifruit in a LEO dose dependent manner. LEO/NE with 1% LEO loading amount has a good effect on preventing postharvest decay of kiwifruit caused by Phomopsis sp.
Collapse
|