1
|
Huang S, Yang X, Ma J, Li C, Wang Y, Wu Z. Ethanol extract of propolis relieves exercise-induced fatigue via modulating the metabolites and gut microbiota in mice. Front Nutr 2025; 12:1549913. [PMID: 40206950 PMCID: PMC11980171 DOI: 10.3389/fnut.2025.1549913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Accepted: 03/12/2025] [Indexed: 04/11/2025] Open
Abstract
Background Propolis, a natural mixture rich in bioactive compounds, has shown the potential to relieve exercise-induced fatigue. However, the underlying mechanism remains unclear. This study aimed to explore the anti-fatigue effects of ethanol extract of propolis (EEP) and its potential mechanisms. Methods Male C57BL/6 mice aged 6-8 weeks were subjected to swim training with or without EEP supplementation (400 mg/kg.bw) for 3 weeks, followed by a exhaustive swimming test to simulate exercise-induced fatigue. The exhaustion time and fatigue-related biochemical indices were measured to assess the anti-fatigue effects. The anti-fatigue mechanism of EEP was further investigated using untargeted serum metabolomics and 16S rRNA gene sequencing of the gut microbiota. Results The results showed that supplementation with EEP significantly increased the exhaustive swimming time of the mice by 27.64%, with no significant effects on body weight, food intake, or viscera and muscle index among the 3 groups. Biochemical analysis indicated that EEP effectively alleviated fatigue-related biochemical indices caused by excessive exercise, including liver glycogen (LG), muscle glycogen (MG), blood lactate (BLA), blood urea nitrogen (BUN), lactate dehydrogenase (LDH), interleukin-6 (IL-6), interleukin-1β (IL-1β), tumor necrosis factor-alpha (TNF-α), superoxide dismutase (SOD), total antioxidant capacity (T-AOC), glutathione peroxidase (GSH-Px), and malondialdehyde (MDA). Serum metabolomics analysis revealed that EEP reversed the levels of 6 key metabolites (Gamma-Aminobutyric acid, pipecolic acid, L-isoleucine, sucrose, succinic acid, and L-carnitine), which are involved in 7 metabolic pathways related to energy metabolism, amino acid metabolism, and carbohydrate metabolism. 16S rRNA sequencing analysis of the cecal contents showed that EEP altered the composition and structure of the gut microbiota, increasing the abundance of butyrate-producing bacteria and reducing the abundance of harmful bacteria. Correlation analysis revealed that specific bacterial genera were closely related to certain differential metabolites and biochemical indices. Conclusion Our study showed that EEP significantly increased exercise endurance in mice and exerted anti-fatigue effects by modulating key metabolites and the gut microbiota.
Collapse
Affiliation(s)
- Shan Huang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Xiaofei Yang
- College of Grain Science and Technology, Shenyang Normal University, Shenyang, Liaoning, China
| | - Jingxuan Ma
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Chen Li
- College of Food and Health, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Yajing Wang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Zhaoxia Wu
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
| |
Collapse
|
2
|
Xuan Q, Huang L, Gu W, Ling C. Twenty years of research on exercise-induced fatigue: A bibliometric analysis of hotspots, bursts, and research trends. Medicine (Baltimore) 2025; 104:e41895. [PMID: 40128028 PMCID: PMC11936639 DOI: 10.1097/md.0000000000041895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 02/28/2025] [Indexed: 03/26/2025] Open
Abstract
Data from the Web of Science Core Collection (2004-2023) on "exercise-induced fatigue" were analyzed using bibliometric tools to explore research trends across countries, institutions, authors, journals, and keywords. The analysis was limited to "Article" and "Review" literature types. Among 4531 publications, the United States contributed the most articles (1005), followed by England (559) and China (516). The most influential institution was Universidade de São Paulo, while the most productive was Institut National de la Santé et de la Recherche Médicale with 103 papers. The European Journal of Applied Physiology ranked as the top journal with 233 articles. Millet Guillaume Y. emerged as the most prolific author, and Amann Markus was the most cited. Recent keyword trends showed a surge in terms like "physical activity" and "aerobic exercise," while "fatigue" and "exercise" remained dominant. Notable findings were observed in oncology, engineering, and multidisciplinary studies, indicating potential research trends. Oxidative stress was identified as the most commonly mentioned mechanism in exercise-induced fatigue studies. This bibliometric analysis highlights current research trends and gaps, suggesting that future studies should focus on understanding the mechanisms of exercise-induced fatigue, developing objective measurement criteria, and exploring strategies for its alleviation.
Collapse
Affiliation(s)
- Qiwen Xuan
- School of Traditional Chinese Medicine, Naval Medical University, Shanghai, China
| | - Lele Huang
- Department of Sports Medicine, Peking University Third Hospital, Institute of Sports Medicine of Peking University, Beijing, China
| | - Wei Gu
- School of Traditional Chinese Medicine, Naval Medical University, Shanghai, China
| | - Changquan Ling
- School of Traditional Chinese Medicine, Naval Medical University, Shanghai, China
| |
Collapse
|
3
|
Guo M, Zhao L, Cao L, Li X, Zhang J, Dong Y, Wu Y, Gu S. Weizmannia coagulans BC99: A Novel Adjunct to Protein Supplementation for Enhancing Exercise Endurance and Reducing Fatigue. Foods 2025; 14:801. [PMID: 40077505 PMCID: PMC11898494 DOI: 10.3390/foods14050801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/06/2025] [Accepted: 01/21/2025] [Indexed: 03/14/2025] Open
Abstract
Adequate protein consumption is essential for optimal physical fitness and enhancing athletic performance. This study explored the impact of Weizmannia coagulans BC99 on protein-supplemented male fatigued mice, examining aspects such as protein digestion, exercise endurance, fatigue-related biochemistry, oxidative stress, and gut microbiota alterations. Results indicate that the synergistic effect of probiotics and protein significantly boosts the activity of protein-digesting enzymes, enhances protein absorption, and reduces serum levels of urea nitrogen, lactate, lactate dehydrogenase, creatine kinase, malondialdehyde, and the inflammatory cytokines interleukin-1β and interleukin-6 in skeletal muscle. Additionally, serum catalase, glutathione, superoxide dismutase levels, interleukin-4 in skeletal muscle, and glycogen stores in muscle and liver were notably increased. The study also found elevated mRNA expression levels of Nrf2 and HO-1 in skeletal muscle. Furthermore, an increase in short-chain fatty acids was observed in the probiotic treatment group, and 16S rDNA sequencing revealed that Weizmannia coagulans BC99 enhanced gut microbiota diversity and augmented beneficial bacterial populations including Roseburia, Mucispirillum, Rikenella, and Kineothrix. Collectively, these findings suggest that combining BC99 with protein supplementation can effectively improve gut flora, thereby enhancing exercise capacity and exerting potent anti-fatigue effects. Our research provides a new possibility for alleviating exercise-induced fatigue.
Collapse
Affiliation(s)
- Minghan Guo
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471000, China; (M.G.); (L.Z.); (L.C.); (X.L.); (J.Z.)
| | - Lina Zhao
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471000, China; (M.G.); (L.Z.); (L.C.); (X.L.); (J.Z.)
| | - Li Cao
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471000, China; (M.G.); (L.Z.); (L.C.); (X.L.); (J.Z.)
- National Demonstration Center for Experimental Food Processing and Safety Education, Luoyang 471023, China
| | - Xuan Li
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471000, China; (M.G.); (L.Z.); (L.C.); (X.L.); (J.Z.)
- National Demonstration Center for Experimental Food Processing and Safety Education, Luoyang 471023, China
| | - Jie Zhang
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471000, China; (M.G.); (L.Z.); (L.C.); (X.L.); (J.Z.)
| | - Yao Dong
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Ying Wu
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471000, China; (M.G.); (L.Z.); (L.C.); (X.L.); (J.Z.)
- Henan Engineering Research Center of Food Microbiology, Luoyang 471000, China
| | - Shaobin Gu
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471000, China; (M.G.); (L.Z.); (L.C.); (X.L.); (J.Z.)
- National Demonstration Center for Experimental Food Processing and Safety Education, Luoyang 471023, China
- Henan Engineering Research Center of Food Microbiology, Luoyang 471000, China
| |
Collapse
|
4
|
Zhao L, Zhao Q, Sharafeldin S, Sang L, Wang C, Xue Y, Shen Q. Moderate Highland Barley Intake Affects Anti-Fatigue Capacity in Mice via Metabolism, Anti-Oxidative Effects and Gut Microbiota. Nutrients 2025; 17:733. [PMID: 40005062 PMCID: PMC11858136 DOI: 10.3390/nu17040733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/16/2025] [Accepted: 02/17/2025] [Indexed: 02/27/2025] Open
Abstract
OBJECTIVES this study aimed to explore the effects of different intake levels (20-80%) of highland barley on the anti-fatigue capacity of ICR mice, focusing on energy metabolism, metabolite accumulation, oxidative stress, and changes in the gut microbiota. METHODS male ICR mice were assigned to five groups: control (normal diet) and four experimental groups with highland barley supplementation at 20%, 40%, 60%, and 80% of total dietary energy. Anti-fatigue performance was assessed by behavioral experiments (rotarod, running, and exhaustive swimming tests), biochemical markers, and gut microbiota analysis. RESULTS the results showed that moderate supplementation (20%) significantly enhanced exercise endurance and anti-fatigue capacity, as evidenced by increased liver glycogen (134.48%), muscle glycogen (87.75%), ATP content (92.07%), Na+-K+-ATPase activity (48.39%), and antioxidant enzyme activities (superoxide dismutase (103.31%), catalase (87.75%), glutathione peroxidase (81.14%). Post-exercise accumulation of blood lactate, quadriceps muscle lactate, serum urea nitrogen, and the oxidative stress marker malondialdehyde was significantly reduced, with differences of 31.52%, 21.83%, 21.72%, and 33.76%, respectively. Additionally, 20% supplementation promoted the growth of beneficial gut microbiota associated with anti-fatigue effects, including unclassified_f_Lachnospiraceae, g_norank_f_Peptococcaceae, Lachnospiraceae NK4A136, Colidextribacter, and Turicibacter. However, when intake reached 60% or more, anti-fatigue effects diminished, with decreased antioxidant enzyme activity, increased accumulation of metabolic waste, and a rise in potentially harmful microbiota (Allobaculum, Desulfovibrio, and norank_f_norank_o_RF39). CONCLUSIONS moderate highland barley supplementation (20% of total dietary energy) enhances anti-fatigue capacity, while excessive intake (≥60%) may have adverse effects.
Collapse
Affiliation(s)
- Liangxing Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (L.Z.); (Q.Z.); (S.S.); (L.S.); (C.W.); (Y.X.)
- National Grain Industry (Highland Barley Deep Processing) Technology Innovation Center, Beijing 100083, China
- National Grain and Oil Standards Research Verification and Testing Center, Beijing 100083, China
| | - Qingyu Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (L.Z.); (Q.Z.); (S.S.); (L.S.); (C.W.); (Y.X.)
- National Grain Industry (Highland Barley Deep Processing) Technology Innovation Center, Beijing 100083, China
- National Grain and Oil Standards Research Verification and Testing Center, Beijing 100083, China
| | - Sameh Sharafeldin
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (L.Z.); (Q.Z.); (S.S.); (L.S.); (C.W.); (Y.X.)
- National Grain Industry (Highland Barley Deep Processing) Technology Innovation Center, Beijing 100083, China
- National Grain and Oil Standards Research Verification and Testing Center, Beijing 100083, China
- Department of Food and Dairy Sciences and Technology, Faculty of Agriculture, Damanhour University, Damanhour 22516, Egypt
| | - Luman Sang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (L.Z.); (Q.Z.); (S.S.); (L.S.); (C.W.); (Y.X.)
- National Grain Industry (Highland Barley Deep Processing) Technology Innovation Center, Beijing 100083, China
- National Grain and Oil Standards Research Verification and Testing Center, Beijing 100083, China
| | - Chao Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (L.Z.); (Q.Z.); (S.S.); (L.S.); (C.W.); (Y.X.)
- National Grain Industry (Highland Barley Deep Processing) Technology Innovation Center, Beijing 100083, China
- National Grain and Oil Standards Research Verification and Testing Center, Beijing 100083, China
| | - Yong Xue
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (L.Z.); (Q.Z.); (S.S.); (L.S.); (C.W.); (Y.X.)
- National Grain Industry (Highland Barley Deep Processing) Technology Innovation Center, Beijing 100083, China
- National Grain and Oil Standards Research Verification and Testing Center, Beijing 100083, China
| | - Qun Shen
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (L.Z.); (Q.Z.); (S.S.); (L.S.); (C.W.); (Y.X.)
- National Grain Industry (Highland Barley Deep Processing) Technology Innovation Center, Beijing 100083, China
- National Grain and Oil Standards Research Verification and Testing Center, Beijing 100083, China
| |
Collapse
|
5
|
Nirmal S, Olatunde OO, Medhe S, Vitti S, Khemtong C, Nirmal NP. Betalains Alleviate Exercise-Induced Oxidative Stress, Inflammation, and Fatigue and Improve Sports Performance: an Update on Recent Advancement. Curr Nutr Rep 2023; 12:778-787. [PMID: 37824059 DOI: 10.1007/s13668-023-00500-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2023] [Indexed: 10/13/2023]
Abstract
PURPOSE OF REVIEW Beetroot juice is a popular natural food supplement commonly consumed for its health and ergogenic benefits. It contains an abundance of phytochemical compounds, which have been shown to enhance sports endurance and recovery. Among them, nitrate is well-studied and known for improving performance during exercise. On the other hand, betalains, the bioactive pigment, have shown various biological activities including antioxidant, anti-inflammatory, and anti-hypertensive, which may improve exercise performance and post-exercise recovery. Additionally, free radical scavenging activities of betalains could increase nitric oxide availability in the blood, thereby improving blood flow and oxygen supply during strenuous exercise. This review article provides a critical discussion of the non-pathological conditions induced by prolonged or strenuous exercise and betalains' potential in reducing such conditions including muscle damage, inflammation, and fatigue. Additionally, the real-time application of betalains as an ergogenic compound in competitive athletes has been discussed. Finally, future directions and conclusions on the potential of betalains as a natural ergogenic aid in sport endurance are outlined. RECENT FINDINGS Betalains in beetroot are the major water-soluble nitrogen-containing pigment possessing high antioxidant, anti-inflammatory, and anti-fatigue activities. Betalain supplementation could alleviate exercise-induced oxidative stress, inflammation, and fatigue in competitive athletes. Betalains have the potential to become a natural ergogenic aid or nutraceutical compound for sports people during exercise and competitive performance.
Collapse
Affiliation(s)
- Siriwan Nirmal
- Department of Adult Nursing, Faculty of Nursing, Burapha University, 169 Long Had Bangsaen Road, Saen Suk, Chonburi, 20131, Thailand
| | - Oladipupo Odunayo Olatunde
- Department of Food and Human Nutritional Sciences, Faculty of Agricultural and Food Sciences, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Seema Medhe
- Institute of Nutrition, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, Nakhon Pathom, 73170, Thailand
| | - Steven Vitti
- Department of Health Sciences, Health Sciences Building, Drexel University, 3601 Filbert Street, Philadelphia, PA, USA
| | - Chutimon Khemtong
- College of Sports Science and Technology, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, Nakhon Pathom, 73170, Thailand
| | - Nilesh Prakash Nirmal
- Institute of Nutrition, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, Nakhon Pathom, 73170, Thailand.
| |
Collapse
|
6
|
Das S, Sakr H, Al-Huseini I, Jetti R, Al-Qasmi S, Sugavasi R, Sirasanagandla SR. Atrazine Toxicity: The Possible Role of Natural Products for Effective Treatment. PLANTS (BASEL, SWITZERLAND) 2023; 12:2278. [PMID: 37375903 DOI: 10.3390/plants12122278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023]
Abstract
There are various herbicides which were used in the agriculture industry. Atrazine (ATZ) is a chlorinated triazine herbicide that consists of a ring structure, known as the triazine ring, along with a chlorine atom and five nitrogen atoms. ATZ is a water-soluble herbicide, which makes it capable of easily infiltrating into majority of the aquatic ecosystems. There are reports of toxic effects of ATZ on different systems of the body but, unfortunately, majority of these scientific reports were documented in animals. The herbicide was reported to enter the body through various routes. The toxicity of the herbicide can cause deleterious effects on the respiratory, reproductive, endocrine, central nervous system, gastrointestinal, and urinary systems of the human body. Alarmingly, few studies in industrial workers showed ATZ exposure leading to cancer. We embarked on the present review to discuss the mechanism of action of ATZ toxicity for which there is no specific antidote or drug. Evidence-based published literature on the effective use of natural products such as lycopene, curcumin, Panax ginseng, Spirulina platensis, Fucoidans, vitamin C, soyabeans, quercetin, L-carnitine, Telfairia occidentalis, vitamin E, Garcinia kola, melatonin, selenium, Isatis indigotica, polyphenols, Acacia nilotica, and Zingiber officinale were discussed in detail. In the absence of any particular allopathic drug, the present review may open the doors for future drug design involving the natural products and their active compounds.
Collapse
Affiliation(s)
- Srijit Das
- Department of Human and Clinical Anatomy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman
| | - Hussein Sakr
- Department of Physiology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman
| | - Isehaq Al-Huseini
- Department of Physiology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman
| | - Raghu Jetti
- Department of Basic Medical Sciences, College of Applied Medical Sciences, King Khalid University, Abha 62521, Saudi Arabia
| | - Sara Al-Qasmi
- College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman
| | - Raju Sugavasi
- Department of Anatomy, Fathima Institute of Medical Sciences, Kadapa 516003, India
| | - Srinivasa Rao Sirasanagandla
- Department of Human and Clinical Anatomy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman
| |
Collapse
|
7
|
Li XY, Jiang CL, Zheng C, Hong CZ, Pan LH, Li QM, Luo JP, Zha XQ. Polygonatum cyrtonema Hua Polysaccharide Alleviates Fatigue by Modulating Osteocalcin-Mediated Crosstalk between Bones and Muscles. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:6468-6479. [PMID: 37043685 DOI: 10.1021/acs.jafc.2c08192] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Osteocalcin was reported to regulate muscle energy metabolism, thus fighting fatigue during exercise. The current work aimed to investigate the anti-fatigue effect and the underlying mechanism of a homogeneous polysaccharide (PCPY-1) from Polgonatum cyrtonema after structure characterization. In the exhaustive swimming mouse model and the co-culture system of BMSCs/C2C12 cells, PCPY-1 significantly stimulated BMSC differentiation into osteoblasts as determined by ALP activity, matrix mineralization, and the protein expressions of osteogenic markers BMP-2, phosphor-Smad1, RUNX2, and osteocalcin. Meanwhile, PCPY-1 remarkably enhanced myoblast energy metabolism by upregulating osteocalcin release and GPRC6A protein expression; the phosphorylation levels of CREB and HSL; the mRNA levels of GLUT4, CD36, FATP1, and CPT1B; and ATP production in vitro and in vivo. Accordingly, PCPY-1 exhibited good anti-fatigue capacity in mice as confirmed by fatigue-related indicators. Our findings indicated PCPY-1 could enhance osteocalcin-mediated communication between bones and muscles, which was conducive to muscle energy metabolism and ATP generation, thus alleviating fatigue in exhausted swimming mice.
Collapse
Affiliation(s)
- Xue-Ying Li
- Engineering Research Centre of Bioprocess of Ministry of Education, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
- School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Chao-Li Jiang
- Engineering Research Centre of Bioprocess of Ministry of Education, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
- School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Chao Zheng
- Engineering Research Centre of Bioprocess of Ministry of Education, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
- School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Cheng-Zhi Hong
- Engineering Research Centre of Bioprocess of Ministry of Education, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
- School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Li-Hua Pan
- Engineering Research Centre of Bioprocess of Ministry of Education, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
- School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Qiang-Ming Li
- Engineering Research Centre of Bioprocess of Ministry of Education, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
- School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Jian-Ping Luo
- Engineering Research Centre of Bioprocess of Ministry of Education, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
- School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Xue-Qiang Zha
- Engineering Research Centre of Bioprocess of Ministry of Education, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
- School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
- Key Laboratory of Metabolism and Regulation for Major Disease of Anhui Higher Education Institutes, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
| |
Collapse
|
8
|
Natural bioactive flavonoids as promising agents in alleviating exercise-induced fatigue. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
9
|
Alleviation of Cognitive and Physical Fatigue with Enzymatic Porcine Placenta Hydrolysate Intake through Reducing Oxidative Stress and Inflammation in Intensely Exercised Rats. BIOLOGY 2022; 11:biology11121739. [PMID: 36552249 PMCID: PMC9774658 DOI: 10.3390/biology11121739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/22/2022] [Accepted: 11/25/2022] [Indexed: 12/04/2022]
Abstract
Intense exercise is reported to induce physical and cognitive fatigue, but few studies have focused on treatments to alleviate fatigue. We hypothesized that the oral supplementation of enzymatic porcine placenta hydrolysate (EPPH) prepared using protease enzymes could alleviate exercise-induced fatigue in an animal model. The objectives of the study were to examine the hypothesis and the action mechanism of EPPH in relieving physical and cognitive fatigue. Fifty male Sprague−Dawley rats aged 8 weeks (body weight: 201 g) were classified into five groups, and rats in each group were given oral distilled water, EPPH (5 mg nitrogen/mL) at doses of 0.08, 0.16, or 0.31 mL/kg body weight (BW)/day, or glutathione (100 mg/kg BW/day) by a feeding needle for 5 weeks, which were named as the control, L-EPPH, M-EPPH, H-EPPH, or positive-control groups, respectively. Ten additional rats had no intense exercise with water administration and were designated as the no-exercise group. After 2 weeks, the rats were subjected to intense exercise and forced swimming trial for 30 min once per week for an additional 4 weeks. At 5 min after the intense exercise, lactate concentrations and lactate dehydrogenase (LDH) activity in the serum and the gastrocnemius muscle were higher in the control group, whereas M-EPPH and H-EPPH treatments suppressed the increase better than in the positive-control (p < 0.05). Intense exercise decreased glycogen content in the liver and gastrocnemius muscle, and M-EPPH and H-EPPH inhibited the decrement (p < 0.05). Moreover, lipid peroxide contents in the gastrocnemius muscle and liver were higher in the control group than in the M-EPPH, H-EPPH, positive-control, and no-exercise groups (p < 0.05). However, antioxidant enzyme activities such as superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) were opposite to the lipid peroxide contents. Hypothalamic corticosterone and hippocampal mRNA expressions of tumor necrosis factor (TNF)-α and IL-1β were higher. However, hippocampal brain-derived neurotrophic factor (BDNF) mRNA expression and protein contents were lower in the control group than in the positive-control group. M-EPPH, H-EPPH, and positive-control suppressed the changes via activating hippocampal cAMP response element-binding protein phosphorylation, and H-EPPH showed better activity than in the positive-control (p < 0.05). In conclusion, EPPH (0.16−0.31 mL/kg BW) intake reduced exercise-induced physical and cognitive fatigue in rats and could potentially be developed as a therapeutic agent for relieving fatigue in humans.
Collapse
|
10
|
Liu Y, Li C, Shen X, Liu Y. The use of traditional Chinese medicines in relieving exercise-induced fatigue. Front Pharmacol 2022; 13:969827. [PMID: 35935864 PMCID: PMC9353218 DOI: 10.3389/fphar.2022.969827] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/04/2022] [Indexed: 11/17/2022] Open
Abstract
Exercise-induced fatigue is a non-pathological fatigue and indicated by a reduction of muscle performance that is caused by excessive physical activity. It seriously affects the daily lives of people, in particular athletes, military personnel, and manual laborers. In recent years, increasing attention has been paid to improving the adverse effect of exercise-induced fatigue on people’s daily activities. Thus, studies and applications of traditional Chinese medicines (TCMs) in relieving exercise-induced fatigue have become the focus because of their good curative effects with fewer side effects. This review aims to document and summarize the critical and comprehensive information about the biological processes of exercise-induced fatigue, and to know the types of TCMs, their active components, and possible molecular mechanisms in alleviating exercise-induced fatigue. The peripheral and central mechanisms that cause exercise-induced fatigue have been summarized. A total of 47 exercise-induced fatigue relief TCMs have been collected, mostly including the types of visceral function regulation and emotional adjustment TCMs. Polysaccharides, terpenes, flavonoids/polyphenols are demonstrated to be the major bioactive components. The underlying molecular mechanisms are mainly related to the improvement of energy metabolism, elimination of excess metabolites, inhibition of oxidative stress and inflammatory response, regulation of HPA axis and neurotransmitters. Although current results are obtained mostly from animal models, the clinic trials are still insufficient, and a very few TCMs have been reported to possess potential hepatotoxicity. These findings still offer great reference value, and the significant efficacy in relieving exercise-induced fatigue is impossible to ignore. This review is expected to give insights into the research and development of new TCMs-derived drugs and health care products in relieving exercise-induced fatigue.
Collapse
Affiliation(s)
- Yuzhou Liu
- School of Leisure Sports, Chengdu Sport University, Chengdu, China
| | - Congying Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaofei Shen
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Xiaofei Shen, ; Yue Liu,
| | - Yue Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Xiaofei Shen, ; Yue Liu,
| |
Collapse
|