1
|
Sriphochanart W, Krusong W, Samuela N, Somboon P, Sirisomboon P, Onmankhong J, Pornpukdeewattana S, Charoenrat T. Enhancing small-scale acetification processes using adsorbed Acetobacter pasteurianus UMCC 2951 on κ-carrageenan-coated luffa sponge. PeerJ 2024; 12:e17650. [PMID: 38952965 PMCID: PMC11216191 DOI: 10.7717/peerj.17650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 06/07/2024] [Indexed: 07/03/2024] Open
Abstract
Background This study explored the utilization of luffa sponge (LS) in enhancing acetification processes. LS is known for having high porosity and specific surface area, and can provide a novel means of supporting the growth of acetic acid bacteria (AAB) to improve biomass yield and acetification rate, and thereby promote more efficient and sustainable vinegar production. Moreover, the promising potential of LS and luffa sponge coated with κ-carrageenan (LSK) means they may represent effective alternatives for the co-production of industrially valuable bioproducts, for example bacterial cellulose (BC) and acetic acid. Methods LS and LSK were employed as adsorbents for Acetobacter pasteurianus UMCC 2951 in a submerged semi-continuous acetification process. Experiments were conducted under reciprocal shaking at 1 Hz and a temperature of 32 °C. The performance of the two systems (LS-AAB and LSK-AAB respectively) was evaluated based on cell dry weight (CDW), acetification rate, and BC biofilm formation. Results The use of LS significantly increased the biomass yield during acetification, achieving a CDW of 3.34 mg/L versus the 0.91 mg/L obtained with planktonic cells. Coating LS with κ-carrageenan further enhanced yield, with a CDW of 4.45 mg/L. Acetification rates were also higher in the LSK-AAB system, reaching 3.33 ± 0.05 g/L d as opposed to 2.45 ± 0.05 g/L d for LS-AAB and 1.13 ± 0.05 g/L d for planktonic cells. Additionally, BC biofilm formation during the second operational cycle was more pronounced in the LSK-AAB system (37.0 ± 3.0 mg/L, as opposed to 25.0 ± 2.0 mg/L in LS-AAB). Conclusions This study demonstrates that LS significantly improves the efficiency of the acetification process, particularly when enhanced with κ-carrageenan. The increased biomass yield, accelerated acetification, and enhanced BC biofilm formation highlight the potential of the LS-AAB system, and especially the LSK-AAB variant, in sustainable and effective vinegar production. These systems offer a promising approach for small-scale, semi-continuous acetification processes that aligns with eco-friendly practices and caters to specialized market needs. Finally, this innovative method facilitates the dual production of acetic acid and bacterial cellulose, with potential applications in biotechnological fields.
Collapse
Affiliation(s)
- Wiramsri Sriphochanart
- Division of Fermentation Technology, School of Food Industry, King Mongkut’s Institute of Technology Ladkrabang, Bangkok, Thailand
| | - Warawut Krusong
- Division of Fermentation Technology, School of Food Industry, King Mongkut’s Institute of Technology Ladkrabang, Bangkok, Thailand
| | - Nialmas Samuela
- Division of Fermentation Technology, School of Food Industry, King Mongkut’s Institute of Technology Ladkrabang, Bangkok, Thailand
| | - Pichayada Somboon
- Division of Fermentation Technology, School of Food Industry, King Mongkut’s Institute of Technology Ladkrabang, Bangkok, Thailand
| | - Panmanas Sirisomboon
- Department of Agricultural Engineering, School of Engineering, King Mongkut’s Institute of Technology Ladkrabang, Bangkok, Thailand
| | - Jiraporn Onmankhong
- Department of Agricultural Engineering, School of Engineering, King Mongkut’s Institute of Technology Ladkrabang, Bangkok, Thailand
| | - Soisuda Pornpukdeewattana
- Division of Fermentation Technology, School of Food Industry, King Mongkut’s Institute of Technology Ladkrabang, Bangkok, Thailand
| | - Theppanya Charoenrat
- Department of Biotechnology, Faculty of Science and Technology, Thammasat University, Pathum Thani, Thailand
| |
Collapse
|
2
|
Liu S, Hu J, Zhong Y, Hu X, Yin J, Xiong T, Nie S, Xie M. A review: Effects of microbial fermentation on the structure and bioactivity of polysaccharides in plant-based foods. Food Chem 2024; 440:137453. [PMID: 38154284 DOI: 10.1016/j.foodchem.2023.137453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/22/2023] [Accepted: 09/08/2023] [Indexed: 12/30/2023]
Abstract
Fermented plant-based foods that catering to consumers' diverse dietary preferences play an important role in promoting human health. Recent exploration of their nutritional value has sparked increasing interest in the structural and bioactive changes of polysaccharides during fermentation, the essential components of plant-based foods which have been extensively studied for their structures and functional properties. Based on the latest key findings, this review summarized the dominant fermented plant-based foods in the market, the involved microbes and plant polysaccharides, and the corresponding modification in polysaccharides structure. Further microbial utilization of these polysaccharides, influencing factors, and the potential contributions of altered structure to the functions of polysaccharides were collectively illustrated. Moreover, future research trend was proposed, focusing on the directional modification of polysaccharides and exploration of the mechanisms underlying structural changes and enhanced biological activity during fermentation.
Collapse
Affiliation(s)
- Shuai Liu
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Jielun Hu
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Yadong Zhong
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Xiaoyi Hu
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Junyi Yin
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Tao Xiong
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Shaoping Nie
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Mingyong Xie
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| |
Collapse
|
3
|
Plioni I, Michalopoulou E, Mallouchos A, Plessas S, Gotis G, Bekatorou A. Sweet Wine Production from the Side-Stream of Industrial Corinthian Currant Processing: Product Quality, Antioxidant Capacity, and Volatilome. Molecules 2023; 28:5458. [PMID: 37513330 PMCID: PMC10383019 DOI: 10.3390/molecules28145458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
In the frame of efforts to add value to the Mediterranean currant cultivation and processing sectors, which is essential for their sustainability, sweet wine production is proposed from the finishing side-stream (FSS) of premium quality Corinthian currants, involving complete fermentation using an alcohol-tolerant yeast followed by (i) the addition of FSS to extract sugars or (ii) syrup made from FSS to adjust sweetness. Wine was also made by (iii) ceasing fermentation at the desired sugar level by ethanol addition. The non-fortified wines had 15.2-15.5% ethanol, 115-145 g/L residual sugar, 7.2-7.6 g/L titratable acidity, low volatile acidity (VA; <0.33 g/L), 280-330 mg/L phenolic content (TPC) (as gallic acid), and 23.8-35.6 mg/L antioxidant capacity (AC) (as ascorbic acid). In total, 160 volatiles were identified by SPME GC-MS, including compounds derived from the grapes, the raisin drying, and the fermentation process. The non-fortified wines had better characteristics (mainly VA, AC, and TPC) than the fortified wine, while sweetness adjustment by FSS is the simplest and lowest cost method since it does not involve ethanol or syrup addition. The proposed methods can lead to good quality sweet wines with a characteristic fruity (grape/raisin) flavor that could be commercialized as specialty raisin beverages or liqueurs.
Collapse
Affiliation(s)
- Iris Plioni
- Department of Chemistry, University of Patras, 26504 Patras, Greece
| | | | - Athanasios Mallouchos
- Department of Food Science and Human Nutrition, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece
| | - Stavros Plessas
- Laboratory of Food Processing, Department of Agriculture Development, Democritus University of Thrace, 68200 Orestiada, Greece
| | - Gerasimos Gotis
- Department of Chemical Engineering, University of Patras, 26500 Patras, Greece
| | - Argyro Bekatorou
- Department of Chemistry, University of Patras, 26504 Patras, Greece
| |
Collapse
|
4
|
Duan G, Li L. Deciphering the mechanism of jujube vinegar on hyperlipoidemia through gut microbiome based on 16S rRNA, BugBase analysis, and the stamp analysis of KEEG. Front Nutr 2023; 10:1160069. [PMID: 37275638 PMCID: PMC10235701 DOI: 10.3389/fnut.2023.1160069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/28/2023] [Indexed: 06/07/2023] Open
Abstract
Background Growing data indicate that the gut microbiome may contribute to the rising incidence of hyperlipoidemia. Jujube vinegar lowers lipids, protects the liver, and reduces oxidant capacity, however, it is unknown whether this is due to the gut flora. To further research the role of the gut microbiome in treating hyperlipidemia with jujube vinegar, we looked into whether the action of jujube vinegar is related to the regulation of the gut microbiome. Method Thirty male ICR mice were used. The control group (CON), the high-fat diet (HFD) group, and the vinegar group (VIN) each consisted of ten female ICR mice fed consistently for eight weeks. For each treatment, we kept track of body mass, liver index, blood lipid levels, and oxidative stress state. We also analyzed mouse feces using high-throughput 16srRNA sequencing to examine the relationship between jujube vinegar's hypolipidemic effect and antioxidant activity and how it affects the gut microbiome. Results Jujube vinegar reduced body weight by 19.92%, serum TC, TG, and LDL-C by 25.09%, 26.83%, and 11.66%, and increased HDL-C by 1.44 times, serum AST and ALT decreased by 26.36% and 34.87% respectively, the blood levels of SOD and GSH-Px increased 1.35-fold and 1.60-fold, respectively. While blood MDA decreased 33.21%, the liver's SOD and GSH-Px increased 1.32-fold and 1.60-fold, respectively, and the liver's MDA decreased 48.96% in HFD mice. The gut microbiome analysis revealed that jujube vinegar increased the intestinal microbial ASV count by 13.46%, and the F/B (Firmicutes/Bacteroidota) ratio by 2.08-fold in high-fat diet mice, and the proportion was significantly inversely correlated with TC, TG, and LDL-C and positively correlated with HDL-C. Biomarker bacteria in the vinegar group included Lactobacillaceae and Lactobacillus, which correlated favorably with HDL-C, SOD, and GSH-Px and negatively with LDL-C, TC, and TG. Jujube vinegar increased the abundance of the Aerobic, Contains Mobile Elements, and Facultative Aerobic by 2.84 times, 1.45 times, and 2.40 times, while decreased the abundance of Potential pathogens by 44.72%, according to the BugBase study. The KEGG analysis showed that jujube vinegar was predominantly reflected in the biological process of gene function and related to signal transduction pathways, including glucagon signaling system, HIF-1 signaling pathway, adipocytokine signaling pathway, amino sugar, and nucleotide sugar metabolism, and so forth. Conclusion Based on these findings, jujube vinegar may reduce hyperlipoidemia by controlling the gut microbiome and enhancing antioxidant capacity.
Collapse
Affiliation(s)
- Guofeng Duan
- College of Horticulture, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Lijuan Li
- Jinzhong College of Information, Taigu, Shanxi, China
| |
Collapse
|
5
|
Ji X. Solid-Phase Microextraction as a Promising Tool for the Determination of Volatile Organic Components in Vinegar. JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1134/s106193482212005x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
6
|
Comparison of the Chemical Properties of Pineapple Vinegar and Mixed Pineapple and Dragon Fruit Vinegar. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8110597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Pineapples are a tropical fruit with high nutritional value and high vitamin and sugar contents. In this study, low-grade pineapples were fermented to produce vinegar using surface culture fermentation (SCF), which involved the addition of dragon fruit juice, to compare the quality and antioxidant activity of different preparations of vinegar. The highest acetic acid concentration (7.35%) was obtained from pineapple vinegar after 20 days of incubation. Vinegar made from mixed pineapple and dragon fruit juice without peel and vinegar with pineapple and dragon fruit juice with peel had acetic acid concentrations of up to 6.20% and 4.50%, respectively. The mixed-fruit vinegar of pineapple and dragon fruit juice with peel displayed the highest antioxidant activity at 210.74 µg/g TE, while no significant difference was found between the other two vinegars (189.52 vs. 187.91 µg/L TE). Notably, the volatile compounds detected in the vinegars were alcohols and esters, which may contribute to the distinct aroma. Overall, the addition of dragon fruit juice with peel to pineapple vinegar increased the phenolic content and antioxidant activity; however, fermentation was slightly slower than that of the other two test materials.
Collapse
|
7
|
Plioni I, Kalogeropoulou A, Dimitrellou D, Kandylis P, Kanellaki M, Nigam PS, Koutinas AA. Effect of cellulose crystallinity modification by starch gel treatment for improvement in ethanol fermentation rate by non-GM yeast cell factories. Bioprocess Biosyst Eng 2022; 45:783-790. [PMID: 35188585 DOI: 10.1007/s00449-022-02706-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 02/07/2022] [Indexed: 11/28/2022]
Abstract
This paper studies the reduction of crystallinity degree (CD) of cellulose treated with starch gel (SG), and the correlation of CD with the fermentation efficiency of cellulose to fuel-grade ethanol. Cellulose bioconversion from wood sawdust, consisting of three processes, was conducted in the same batch (one-step). The XRD and TEM analysis revealed 11% reduction in cellulose CD after its treatment with SG. One-step bioconversion process was performed employing two cell factories (CF) of non-engineered S. cerevisiae. CFs contained non- engineered S. cerevisiae cells covered with either SG entrapping Trichoderma reesei or cellulases prepared in the laboratory and immobilized in SG. The consolidated fermentation of treated cellulose resulted in an increase of bioethanol concentration (60-90%) in 2-day fermentation and the maximum ethanol concentration reached was approximately 5 mL/L (3.95 g/L). The fermentation efficiency for grade-fuel ethanol production was improved by cellulose pretreatment using SG to achieve reduced CD.
Collapse
Affiliation(s)
- Iris Plioni
- Food Biotechnology Group, Department of Chemistry, University of Patras, 26500, Patras, Greece
| | | | - Dimitra Dimitrellou
- Food Biotechnology Group, Department of Chemistry, University of Patras, 26500, Patras, Greece.,Department of Food Science and Technology, Ionian University, Kefalonia, 28100, Argostolion, Greece
| | - Panagiotis Kandylis
- Department of Food Science and Technology, School of Agriculture, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Maria Kanellaki
- Food Biotechnology Group, Department of Chemistry, University of Patras, 26500, Patras, Greece
| | - Poonam Singh Nigam
- Biomedical Sciences Research Institute, Ulster University, Coleraine, Northern Ireland, UK
| | - Athanasios A Koutinas
- Food Biotechnology Group, Department of Chemistry, University of Patras, 26500, Patras, Greece.
| |
Collapse
|
8
|
Effect of Yeast Assimilable Nitrogen Content on Fermentation Kinetics, Wine Chemical Composition and Sensory Character in the Production of Assyrtiko Wines. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12031405] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Two wild-type Saccharomyces cerevisiae yeast strains (Sa and Sb) were tested for white wine production using Assyrtiko grape of Santorini. A third commercial Saccharomyces strain was also studied for comparison reasons. Two concentrations of yeast extract and diammonium phosphate (DAP) were added to the must (150 and 250 mg/L) in order to evaluate the effect of nitrogen content on the final wine quality. Analytical methods (HPLC, GC-MS) and sensory analysis were employed to assess the quality of the wines. Fermentation kinetics were monitored throughout the experiment. By the second day of fermentation, all strains showed an approximate consumption of 70% of amino acids. Differences among strains were observed regarding inorganic nitrogen requirements. Sb strain resulted in higher concentrations of higher alcohols (1.9-fold) and ketones (5.6-fold) and lower concentrations of esters (1.2-fold) compared to the control, while Sa strain resulted in higher content of fatty acids (2.1-fold). Both indigenous strains scored better results in aroma quality, body and acidity compared to control. The overall evaluation of the data highlights the great potential of the indigenous S. cerevisiae strains as fermentation starters providing promising results in the sector of terroir wines.
Collapse
|