1
|
Sato K, Deguchi S, Nagai N, Yamamoto T, Mitamura K, Taga A. Neokestose suppresses the increase in plasma glucose caused by oral administration of sucrose in a streptozotocin‑induced diabetic rat. Sci Rep 2024; 14:16658. [PMID: 39030286 PMCID: PMC11271602 DOI: 10.1038/s41598-024-67458-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/11/2024] [Indexed: 07/21/2024] Open
Abstract
Neokestose is considered to have a prebiotic function. However, the physiological activity of neokestose remains unknown. Neokestose has a blastose, a sucrose analog, in its structure. We previously demonstrated that oral administration of blastose to diabetic rats suppressed the increase in plasma glucose (PG) concentration after sucrose administration. Therefore, neokestose might have a similar effect. In this study, we investigated the effects of neokestose on PG concentrations and the mechanism of its action. We first administered neokestose orally to streptozotocin-induced diabetic rats and observed that the expected consequent increase in PG concentration was significantly suppressed. Next, we examined the inhibitory effect of neokestose on glycosidase activity, but observed only a slight inhibitory effect. Therefore, we hypothesized that neokestose might be hydrolyzed by gastric acid to produce blastose. We performed an acid hydrolysis of neokestose using artificial gastric juice. After acid hydrolysis, peaks corresponding to neokestose and its decomposition products including blastose were observed. Therefore, we suggest that neokestose and blastose, a decomposition product, synergistically inhibit glycosidase activity. These findings support the potential use of neokestose as a useful functional oligosaccharide that can help manage plasma glucose concentrations in patients with diabetes mellitus.
Collapse
Affiliation(s)
- Kanta Sato
- Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka, 577-8502, Japan
| | - Saori Deguchi
- Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka, 577-8502, Japan
| | - Noriaki Nagai
- Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka, 577-8502, Japan
| | - Tetsushi Yamamoto
- Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka, 577-8502, Japan
| | - Kuniko Mitamura
- Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka, 577-8502, Japan
| | - Atsushi Taga
- Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka, 577-8502, Japan.
- Antiaging Center, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka, 577-8502, Japan.
- Pathological and Biomolecule Analyses Laboratory, School of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka City, Osaka, 577-8502, Japan.
| |
Collapse
|
2
|
Wang H, Jin H, Chai R, Li H, Fan J, Wang Y, Wei F, Ma S. An Analysis of Polysaccharides from Eight Plants by a Novel Heart-Cutting Two-Dimensional Liquid Chromatography Method. Foods 2024; 13:1173. [PMID: 38672845 PMCID: PMC11049114 DOI: 10.3390/foods13081173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/07/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Natural polysaccharides are important active biomolecules. However, the analysis and structural characterization of polysaccharides are challenging tasks that often require multiple techniques and maps to reflect their structural features. This study aimed to propose a new heart-cutting two-dimensional liquid chromatography (2D-LC) method for separating and analyzing polysaccharides to explore the multidimensional information of polysaccharide structure in a single map. That is, the first-dimension liquid chromatography (1D-LC) presents molecular-weight information, and the second-dimension liquid chromatography (2D-LC) shows the fingerprints of polysaccharides. In this 2D-LC system, the size-exclusion chromatography-hydrophilic interaction chromatography (SEC-HILIC) model was established. Coupling with a charged aerosol detector (CAD) eliminated the need for the derivatization of the polysaccharide sample, allowing the whole process to be completed within 80 min. The methods were all validated in terms of precision, linearity, stability, and repeatability. The capability of the new 2D-LC method was demonstrated in determining various species of natural polysaccharides. Our experimental data demonstrated the feasibility of the whole systematic approach, opening the door for further applications in the field of natural polysaccharide analysis.
Collapse
Affiliation(s)
- Haonan Wang
- National Institutes for Food and Drug Control, National Medical Products Administration, Beijing 102629, China
- National Institutes for Food and Drug Control, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Hongyu Jin
- National Institutes for Food and Drug Control, National Medical Products Administration, Beijing 102629, China
| | - Ruiping Chai
- Thermo Fisher Scientific (China) Co., Ltd., Shanghai 201206, China
| | - Hailiang Li
- National Institutes for Food and Drug Control, National Medical Products Administration, Beijing 102629, China
| | - Jing Fan
- National Institutes for Food and Drug Control, National Medical Products Administration, Beijing 102629, China
| | - Ying Wang
- National Institutes for Food and Drug Control, National Medical Products Administration, Beijing 102629, China
| | - Feng Wei
- National Institutes for Food and Drug Control, National Medical Products Administration, Beijing 102629, China
| | | |
Collapse
|
3
|
Yamamoto T, Shiburo R, Moriyama Y, Mitamura K, Taga A. Protein components of maple syrup as a potential resource for the development of novel anti‑colorectal cancer drugs. Oncol Rep 2023; 50:179. [PMID: 37594118 PMCID: PMC10463007 DOI: 10.3892/or.2023.8616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 07/31/2023] [Indexed: 08/19/2023] Open
Abstract
Maple syrup is a natural sweetener consumed worldwide. Active ingredients of maple syrup possess antitumor effects; however, these ingredients are phenolic compounds. The present study aimed to investigate components other than phenolic compounds that may have antitumor effects against colorectal cancer (CRC). Cell proliferation assays demonstrated that treatment with the more than 10,000 molecular weight fraction significantly inhibited viability in DLD‑1 cells. Therefore, we hypothesized that the protein components of maple syrup may be the active ingredients in maple syrup. We obtained protein components from maple syrup by ammonium sulfate precipitation, and treatment with the protein fraction of maple syrup (MSpf) was found to exhibit a potential antitumor effect. MSpf‑treated DLD‑1 colon adenocarcinoma cells exhibited significantly decreased proliferation, migration and invasion. In addition, upregulation of LC3A and E‑cadherin and downregulation of MMP‑9 expression levels were observed following MSpf treatment. Investigation of the components of MSpf suggested that it was primarily formed of advanced glycation end products (AGEs). Therefore, whether AGEs in MSpf affected the STAT3 pathway through the binding to its receptor, receptor of AGE (RAGE), was assessed. MSpf treatment was associated with decreased RAGE expression and STAT3 phosphorylation. Finally, to determine whether autophagy contributed to the inhibitory effect of cell proliferation following MSpf treatment, the effect of MSpf treatment on autophagy induction following bafilomycin A1 treatment, a specific autophagy inhibitor, was assessed. The inhibitory effect of MSpf treatment on cell proliferation was enhanced through the inhibition of autophagy by bafilomycin A1 treatment. These results suggested that AGEs in MSpf suppressed cell proliferation and epithelial‑mesenchymal transition through inhibition of the STAT3 signaling pathway through decreased RAGE expression. Therefore, AGEs in MSpf may be potential compounds for the development of antitumor drugs for the treatment of CRC with fewer adverse effects compared with existing antitumor drugs.
Collapse
Affiliation(s)
- Tetsushi Yamamoto
- Pathological and Biomolecule Analyses Laboratory, Faculty of Pharmacy, Kindai University, Higashi-osaka 577-8502, Japan
| | - Ryota Shiburo
- Pathological and Biomolecule Analyses Laboratory, Faculty of Pharmacy, Kindai University, Higashi-osaka 577-8502, Japan
| | - Yoshie Moriyama
- Pathological and Biomolecule Analyses Laboratory, Faculty of Pharmacy, Kindai University, Higashi-osaka 577-8502, Japan
| | - Kuniko Mitamura
- Pathological and Biomolecule Analyses Laboratory, Faculty of Pharmacy, Kindai University, Higashi-osaka 577-8502, Japan
| | - Atsushi Taga
- Pathological and Biomolecule Analyses Laboratory, Faculty of Pharmacy, Kindai University, Higashi-osaka 577-8502, Japan
- Antiaging Center, Kindai University, Higashi-osaka 577-8502, Japan
| |
Collapse
|
4
|
Mohammed F, Sibley P, Abdulwali N, Guillaume D. Nutritional, pharmacological, and sensory properties of maple syrup: A comprehensive review. Heliyon 2023; 9:e19216. [PMID: 37662821 PMCID: PMC10469071 DOI: 10.1016/j.heliyon.2023.e19216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 08/12/2023] [Accepted: 08/16/2023] [Indexed: 09/05/2023] Open
Abstract
Maple syrup is a naturally sweet product consumed directly or introduced in the preparation of various maple-derived food products. Several studies have described the chemical isolation and identification of maple syrup compounds, with some presenting pharmacological properties. However, a detailed review on maple syrup nutritional properties has not been undertaken. This review presents detailed information about the nutritional, organoleptic, and pharmacological properties of maple syrup. Studies carried out on animal models and a limited number of human models emphasize the potential benefits of maple syrup as a substitute for refined sugars, indicating that it could contribute to improved metabolic health when used in moderation. However, further medical and nutritional health studies based on human health assessments are needed to better understand the mechanisms of action of the various components of maple syrup and its potential therapeutic properties to demonstrate a stronger justification for its consumption relative to refined sugars. In addition, we compare maple syrup and common sweeteners to provide a further critical perspective on the potential nutritional and health benefits of maple syrup.
Collapse
Affiliation(s)
- Faez Mohammed
- School of Environmental Sciences, University of Guelph, 50 Stone Road E, Guelph, ON, N1G 2W1, Canada
- Faculty of Applied Science-Arhab, Sana'a University, Sana'a, Yemen
| | - Paul Sibley
- School of Environmental Sciences, University of Guelph, 50 Stone Road E, Guelph, ON, N1G 2W1, Canada
| | - Nada Abdulwali
- Department of Chemistry, University of Guelph, 50 Stone Road East, Guelph, Ontario, N1G 2W1, Canada
| | - Dominique Guillaume
- ICMR, School of Medicine-Pharmacy, CNRS-UMR 7312, 51 Rue Cognacq Jay, 51100 Reims, France
| |
Collapse
|
5
|
Sato K, Yamamoto T, Mitamura K, Taga A. Correction: Sato et al. Separation of Fructosyl Oligosaccharides in Maple Syrup by Using Charged Aerosol Detection. Foods 2021, 10, 3160. Foods 2023; 12:foods12112220. [PMID: 37297519 DOI: 10.3390/foods12112220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/01/2022] [Accepted: 11/08/2022] [Indexed: 06/12/2023] Open
Abstract
In the original publication [...].
Collapse
Affiliation(s)
- Kanta Sato
- Pathological and Biomolecule Analyses Laboratory, Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashiosaka 577-8502, Japan
| | - Tetsushi Yamamoto
- Pathological and Biomolecule Analyses Laboratory, Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashiosaka 577-8502, Japan
| | - Kuniko Mitamura
- Pathological and Biomolecule Analyses Laboratory, Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashiosaka 577-8502, Japan
| | - Atsushi Taga
- Pathological and Biomolecule Analyses Laboratory, Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashiosaka 577-8502, Japan
| |
Collapse
|
6
|
Saraiva A, Carrascosa C, Ramos F, Raheem D, Lopes M, Raposo A. Maple Syrup: Chemical Analysis and Nutritional Profile, Health Impacts, Safety and Quality Control, and Food Industry Applications. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:13684. [PMID: 36294262 PMCID: PMC9603788 DOI: 10.3390/ijerph192013684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/16/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Maple syrup is a delicacy prepared by boiling the sap taken from numerous Acer species, primarily sugar maple trees. Compared to other natural sweeteners, maple syrup is believed to be preferable to refined sugar for its high concentration of phenolic compounds and mineral content. The presence of organic acids (malic acid), amino acids and relevant amounts of minerals, such as potassium, calcium, zinc and manganese, make maple syrup unique. Given the growing demand for naturally derived sweeteners over the past decade, this review paper deals with and discusses in detail the most important aspects of chemical maple syrup analyses, with a particular emphasis on the advantages and disadvantages of the different analytical approaches. A successful utilization on the application of maple syrup in the food industry, will rely on a better understanding of its safety, quality control, nutritional profile, and health impacts, including its sustainability issues.
Collapse
Affiliation(s)
- Ariana Saraiva
- Department of Animal Pathology and Production, Bromatology and Food Technology, Faculty of Veterinary, Universidad de Las Palmas de Gran Canaria, Trasmontaña s/n, 35413 Arucas, Spain
| | - Conrado Carrascosa
- Department of Animal Pathology and Production, Bromatology and Food Technology, Faculty of Veterinary, Universidad de Las Palmas de Gran Canaria, Trasmontaña s/n, 35413 Arucas, Spain
| | - Fernando Ramos
- Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Associated Laboratory for Green Chemistry (LAQV) of the Network of Chemistry and Technology (REQUIMTE), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
| | - Dele Raheem
- Northern Institute for Environmental and Minority Law (NIEM), Arctic Centre, University of Lapland, 96101 Rovaniemi, Finland
| | - Maria Lopes
- Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Associated Laboratory for Green Chemistry (LAQV) of the Network of Chemistry and Technology (REQUIMTE), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
| | - António Raposo
- CBIOS (Research Center for Biosciences and Health Technologies), Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal
| |
Collapse
|