1
|
Phajon Y, Tan H, Liu B, Zhang Y, Ju Y, Shen T, Xu M, Fang Y. Effect of Terroir on Phenolic Content and Aroma Properties of Grapes and Wines. Foods 2025; 14:1409. [PMID: 40282810 PMCID: PMC12026802 DOI: 10.3390/foods14081409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2025] [Revised: 03/31/2025] [Accepted: 04/17/2025] [Indexed: 04/29/2025] Open
Abstract
Ten vineyards, belonging to five wine regions, were selected in this study. Maturity indicators and phenolic and aromatic compounds were measured to investigate relationships with factors related to the terroir, including climate conditions and soil nutrients. Multiple factor analysis of all compositions showed that different wine regions or vineyards had different characteristics, which were partly associated with the terroir. The results showed that Shizuishan had high sugar content. A high level of anthocyanins could be found in Qingtongxia and Yongning, respectively. Moreover, Qingtongxia had higher concentrations of monomeric phenols in grapes than the others. LSYH (Lanshanyunhao) and LL (Lilan) had higher YAN (yeast assimilable nitrogen) content and pH in grapes, but their wine had a green flavor (high concentration of alcoholic volatile compounds). The Shizuishan and Hongsipu wine regions had fruitier flavors (high concentration of ester volatile compounds). This study demonstrated the characteristics of different vineyards and wine regions, providing a direction for the future development of region-specific grapes and wines.
Collapse
Affiliation(s)
- Yuyuen Phajon
- College of Enology, Northwest A&F University, Yangling 712100, China; (Y.P.); (H.T.); (B.L.); (Y.Z.); (Y.J.)
| | - Hongbing Tan
- College of Enology, Northwest A&F University, Yangling 712100, China; (Y.P.); (H.T.); (B.L.); (Y.Z.); (Y.J.)
| | - Bochen Liu
- College of Enology, Northwest A&F University, Yangling 712100, China; (Y.P.); (H.T.); (B.L.); (Y.Z.); (Y.J.)
| | - Yang Zhang
- College of Enology, Northwest A&F University, Yangling 712100, China; (Y.P.); (H.T.); (B.L.); (Y.Z.); (Y.J.)
| | - Yanlun Ju
- College of Enology, Northwest A&F University, Yangling 712100, China; (Y.P.); (H.T.); (B.L.); (Y.Z.); (Y.J.)
| | - Tian Shen
- Horticultural Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, China; (T.S.); (M.X.)
| | - Meilong Xu
- Horticultural Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, China; (T.S.); (M.X.)
| | - Yulin Fang
- College of Enology, Northwest A&F University, Yangling 712100, China; (Y.P.); (H.T.); (B.L.); (Y.Z.); (Y.J.)
- Shaanxi Engineering Research Center for Viti-Viniculture, Yangling 712100, China
- Heyang Viti-Viniculture Station, Northwest A&F University, Yangling 715300, China
| |
Collapse
|
2
|
Zhang X, Yang H, Liu N, Sun J, Yao R, Shi F, Li J, Jiang W, Li H, Zhang Q, Zhang J. Chemical and sensory properties of young cabernet sauvignon and marselan wines from subregions on the eastern foothills of helan mountains in ningxia, China: Terroir effect. Food Chem X 2025; 25:102191. [PMID: 39925757 PMCID: PMC11803894 DOI: 10.1016/j.fochx.2025.102191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 01/11/2025] [Accepted: 01/13/2025] [Indexed: 02/11/2025] Open
Abstract
This study aimed to analyze the characteristics of Cabernet Sauvignon (CS) and Marselan (M) wines from different subregions on the eastern foothills of Helan Mountain. UHPLC-ESI-Q-ToF and HS-SPME-GC-MS were employed to analyze the metabolic properties of the wines, and QDA was combined for sensory characterization. The results indicated that chromaticity, total phenols, ethyl isobutyrate, n-decanoic acid, (-)-epigallocatechin, and epigallocatechin were key indicators for distinguishing CS wines from different subregions, whereas total acids, total phenols, hexanol, ethyl butyrate, protocatechuic acid, and (+)-catenin were key indicators for distinguishing M wines from different subregions. The richness and coordination of fruit, floral, dried fruit, spice, and green flavors in the wine were key indicators determining the flavor characteristics of wine in winemaking area. The key compounds with aroma of green, fruity, and floral that determine the core aroma, aroma coordination, and elegance of wine in the winemaking area include cis-2-exen-1-ol, ethyl palmate, octanoic acid, and n-decanoic acid.
Collapse
Affiliation(s)
- Xue Zhang
- School of Life Sciences, Ningxia University, Yinchuan, Ningxia 750021, China
- School of Wine & Horticulture, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Hui Yang
- School of Life Sciences, Ningxia University, Yinchuan, Ningxia 750021, China
- School of Wine & Horticulture, Ningxia University, Yinchuan, Ningxia 750021, China
- Institute of Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Na Liu
- Ningxia Changyu Longyu Estate Co. Ltd., Yinchuan, Ningxia 750000, China
| | - Jian Sun
- Ningxia Changyu Longyu Estate Co. Ltd., Yinchuan, Ningxia 750000, China
| | - Ruijia Yao
- School of Advance Interdisciplinary, Ningxia University, Zhongwei, Ningxia 750021, China
| | - Fangzhou Shi
- School of Wine & Horticulture, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Jiming Li
- Ningxia Changyu Longyu Estate Co. Ltd., Yinchuan, Ningxia 750000, China
| | - Wenguang Jiang
- Ningxia Changyu Longyu Estate Co. Ltd., Yinchuan, Ningxia 750000, China
| | - Hongying Li
- Ningxia Institute of Meteorological Sciences, Yinchuan, Ningxia 750002, China
| | - Qingchen Zhang
- College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - JunXiang Zhang
- School of Life Sciences, Ningxia University, Yinchuan, Ningxia 750021, China
- School of Wine & Horticulture, Ningxia University, Yinchuan, Ningxia 750021, China
| |
Collapse
|
3
|
Liu J, Zhang X, Zhu Y, Wang S, Hu X, Ling M, Li D, Duan C, Mu H, Zhu B, Lan Y. Exploring the aroma profiles and color characteristics of chardonnay wines from the eastern foothills of Ningxia Helan Mountain in China: A Flavoromics approach. Food Chem X 2024; 24:102038. [PMID: 39659679 PMCID: PMC11629580 DOI: 10.1016/j.fochx.2024.102038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/10/2024] [Accepted: 11/20/2024] [Indexed: 12/12/2024] Open
Abstract
This study assessed the chemosensory characteristics of Chardonnay wines from the eastern foothills of the Ningxia Helan Mountain, China. Using Check-All-That-Apply (CATA) and Descriptive Analysis (DA), 29 wines were categorized into lively (QTX and XX sub-regions, marked by citrus and floral aroma) and implicit (YN sub-region, marked by truffle and kerosene aroma) aroma styles. GC-Quadrupole-MS and GC-Orbitrap-MS identified 191 volatile compounds. Subsequent OPLS-DA analysis underscored those volatile compounds, including 1-hexanol, 2-phenylethyl ester, butanedioic acid, diethyl ester, and phenylacetaldehyde, likely form the fundamental volatile framework of the distinct aroma styles. HPLC-QqQ-MS/MS analysis identified 26 non-volatile phenolic compounds. Wines from the YN region exhibited a notable yellowish hue, likely due to their higher flavanol content. This study offers insights into Chardonnay wines' chemistry and sensory traits, guiding vintners to optimize viticulture and oenology practices, and empowering consumers to select wines based on unique aromas and quality.
Collapse
Affiliation(s)
- Jiani Liu
- Beijing Key Laboratory of Food Processing and Safety in Forestry, Department of Food Science, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Xinyue Zhang
- Beijing Key Laboratory of Food Processing and Safety in Forestry, Department of Food Science, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Yuxuan Zhu
- Beijing Key Laboratory of Food Processing and Safety in Forestry, Department of Food Science, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Shuying Wang
- Beijing Key Laboratory of Food Processing and Safety in Forestry, Department of Food Science, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Xiaoyue Hu
- Beijing Key Laboratory of Food Processing and Safety in Forestry, Department of Food Science, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Mengqi Ling
- College of Food Science and Engineering, “The Belt and Road” International Institute of Grape and Wine Industry Innovation, Beijing University of Agriculture, Beijing 102206, China
| | - Demei Li
- College of Food Science and Engineering, “The Belt and Road” International Institute of Grape and Wine Industry Innovation, Beijing University of Agriculture, Beijing 102206, China
| | - Changqing Duan
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Haibin Mu
- Collaborative innovation Center of Eastern Foothills of Helan Mountain Wine Industry Technology, Yinchuan 750104, China
| | - Baoqing Zhu
- Beijing Key Laboratory of Food Processing and Safety in Forestry, Department of Food Science, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Yibin Lan
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| |
Collapse
|
4
|
Zhang Y, Cui Z, Li J, Wei M, Wang Y, Jiang W, Fang Y, Sun X, Ge Q. Aroma Identification and Traceability of the Core Sub-Producing Area in the Helan Mountain Eastern Foothills Using Two-Dimensional Gas Chromatography and Time-of-Flight Mass Spectrometry and Chemometrics. Foods 2024; 13:3644. [PMID: 39594060 PMCID: PMC11594276 DOI: 10.3390/foods13223644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/11/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
The combination of volatile compounds endows wines with unique aromatic characteristics and is closely related to their geographical origins. In the pursuit of origin identification and the subdivision of homogeneous production areas, clarifying the characteristics of production areas is of great significance for improving wine quality and commercial value. In this study, GC×GC-TOFMS technology was used to analyze the aroma characteristics of "Cabernet Sauvignon" wines from 26 wineries in the Helan (HL), Yinchuan (YC), Yongning (YN), Qingtongxia (QTX), and Hongsibu (HSP) sub-producing areas in the eastern foothills of Helan Mountain in Ningxia, China. The results indicate a gradual increase in relative humidity from the southern part of Ningxia, with the YN sub-region showing optimal fruit development and the QTX region having the highest maturity. A total of 184 volatile compounds were identified, with 36 compounds with an OAV > 1, crucial for the aroma profiles of primarily fermentation-derived alcohols and esters. An aromatic vector analysis revealed that "floral" and "fruity" notes are the primary characteristics of Cabernet Sauvignon wines from the Helan Mountain East region, with lower maturity aiding in the retention of these aromas. By constructing a reliable OPLS-DA model, it was determined that 15 substances (VIP > 1) played a crucial role in identifying production areas, among which phenylethyl alcohol and isoamyl alcohol were the main contributors. In addition, a Pearson correlation analysis showed a negative correlation between sunlight duration during the growing season and benzyl alcohol accumulation, while a significant positive correlation was observed during the ripening period. Due to the critical role of phenyl ethanol in identifying producing areas, this further demonstrates that sunshine conditions may be a key factor contributing to the differences in wine flavor across regions. This study offers a theoretical foundation for understanding the relationship between climatic factors and flavor characteristics, addressing the issue of wine homogenization in small production areas, clarifying typical style characteristics, and establishing a traceability technology system based on characteristic aroma.
Collapse
Affiliation(s)
- Yuanke Zhang
- College of Enology, Northwest A&F University, Yangling 712100, China; (Y.Z.); (Z.C.); (J.L.); (M.W.); (Y.W.); (W.J.); (Y.F.)
- Ningxia Institute of Agricultural Products Quality Standards and Testing Technology, Yinchuan 750002, China
| | - Zefang Cui
- College of Enology, Northwest A&F University, Yangling 712100, China; (Y.Z.); (Z.C.); (J.L.); (M.W.); (Y.W.); (W.J.); (Y.F.)
| | - Jianing Li
- College of Enology, Northwest A&F University, Yangling 712100, China; (Y.Z.); (Z.C.); (J.L.); (M.W.); (Y.W.); (W.J.); (Y.F.)
| | - Mengyuan Wei
- College of Enology, Northwest A&F University, Yangling 712100, China; (Y.Z.); (Z.C.); (J.L.); (M.W.); (Y.W.); (W.J.); (Y.F.)
| | - Yue Wang
- College of Enology, Northwest A&F University, Yangling 712100, China; (Y.Z.); (Z.C.); (J.L.); (M.W.); (Y.W.); (W.J.); (Y.F.)
| | - Wenguang Jiang
- College of Enology, Northwest A&F University, Yangling 712100, China; (Y.Z.); (Z.C.); (J.L.); (M.W.); (Y.W.); (W.J.); (Y.F.)
| | - Yulin Fang
- College of Enology, Northwest A&F University, Yangling 712100, China; (Y.Z.); (Z.C.); (J.L.); (M.W.); (Y.W.); (W.J.); (Y.F.)
| | - Xiangyu Sun
- College of Enology, Northwest A&F University, Yangling 712100, China; (Y.Z.); (Z.C.); (J.L.); (M.W.); (Y.W.); (W.J.); (Y.F.)
| | - Qian Ge
- Ningxia Institute of Agricultural Products Quality Standards and Testing Technology, Yinchuan 750002, China
| |
Collapse
|
5
|
Li J, Hou F, Lv N, Zhao R, Zhang L, Yue C, Nie M, Chen L. From Rare Disorders of Kidney Tubules to Acute Renal Injury: Progress and Prospective. KIDNEY DISEASES (BASEL, SWITZERLAND) 2024; 10:153-166. [PMID: 38751796 PMCID: PMC11095595 DOI: 10.1159/000536423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 12/15/2023] [Indexed: 05/18/2024]
Abstract
Background Acute kidney injury (AKI) is a severe condition marked by rapid renal function deterioration and elevated mortality, with traditional biomarkers lacking sensitivity and specificity. Rare tubulointerstitial diseases encompass a spectrum of disorders, primarily including monogenic diseases, immune-related conditions, and drug-induced tubulointerstitial diseases. The clinical manifestations vary from electrolyte and acid-base imbalances to kidney function insufficiency, which is associated with AKI in up to 20% of cases. Evidence indicated that rare tubulointerstitial diseases might provide new conceptual insights and perspectives for novel biomarkers and potential therapeutic strategies for AKI. Summary Autosomal dominant tubulointerstitial kidney disease (ADTKD) and Fanconi syndrome (FS) are rare tubulointerstitial diseases. In ADTKD, UMOD and REN are closely related to AKI by affecting oxidative stress and tubuloglomerular feedback, which provide potential new biomarkers for AKI. Both rare tubulointerstitial diseases and AKI share etiologies and treatment responses. From the mechanism standpoint, rare tubulointerstitial diseases and AKI involve tubular transporter injury, initially manifesting as tubular dysfunction in tubulointerstitial disorder and progressing to AKI because of the programmed cell death with apoptosis, pyroptosis, or necroptosis of proximal tubule cells. Additionally, mitochondrial dysfunction has been identified as a common mechanism in both tubulointerstitial diseases and AKI induced by drugs, pSS, or monoclonal diseases. In the end, both AKI and FS patients and animal models responded well to the therapy of the primary diseases. Key Messages In this review, we describe an overview of ADTKD and FS to identify their associations with AKI. Mitochondrial dysfunction contributes to rare tubulointerstitial diseases and AKI, which might provide a potential therapeutic target.
Collapse
Affiliation(s)
- Jiaying Li
- Department of Nephrology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Fangxing Hou
- Department of Nephrology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Ning Lv
- Department of Nephrology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Ruohuan Zhao
- Department of Nephrology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Lei Zhang
- Department of Nephrology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Cai Yue
- Department of Nephrology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Min Nie
- Department of Endocrinology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Limeng Chen
- Department of Nephrology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| |
Collapse
|
6
|
Zhang D, Wei Z, Han Y, Duan Y, Shi B, Ma W. A Review on Wine Flavour Profiles Altered by Bottle Aging. Molecules 2023; 28:6522. [PMID: 37764298 PMCID: PMC10534415 DOI: 10.3390/molecules28186522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
The wine flavour profile directly determines the overall quality of wine and changes significantly during bottle aging. Understanding the mechanism of flavour evolution during wine bottle aging is important for controlling wine quality through cellar management. This literature review summarises the changes in volatile compounds and non-volatile compounds that occur during wine bottle aging, discusses chemical reaction mechanisms, and outlines the factors that may affect this evolution. This review aims to provide a deeper understanding of bottle aging management and to identify the current literature gaps for future research.
Collapse
Affiliation(s)
- Di Zhang
- College of Enology and Horticulture, Ningxia University, Yinchuan 750021, China
- Engineering Research Center of Grape and Win, Ningxia University, Yinchuan 750021, China
| | - Ziyu Wei
- College of Enology and Horticulture, Ningxia University, Yinchuan 750021, China
| | - Yufeng Han
- College of Enology and Horticulture, Ningxia University, Yinchuan 750021, China
| | - Yaru Duan
- College of Enology and Horticulture, Ningxia University, Yinchuan 750021, China
- Engineering Research Center of Grape and Win, Ningxia University, Yinchuan 750021, China
| | - Baohui Shi
- College of Enology and Horticulture, Ningxia University, Yinchuan 750021, China
- Engineering Research Center of Grape and Win, Ningxia University, Yinchuan 750021, China
| | - Wen Ma
- College of Enology and Horticulture, Ningxia University, Yinchuan 750021, China
- Engineering Research Center of Grape and Win, Ningxia University, Yinchuan 750021, China
| |
Collapse
|
7
|
Sub-Regional Variation and Characteristics of Cabernet Sauvignon Wines in the Eastern Foothills of the Helan Mountain: A Perspective from Phenolics, Visual Properties and Mouthfeel. Foods 2023; 12:foods12051081. [PMID: 36900598 PMCID: PMC10000446 DOI: 10.3390/foods12051081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/17/2023] [Accepted: 02/27/2023] [Indexed: 03/08/2023] Open
Abstract
As one of the most promising wine regions in China, the eastern foothills of the Helan Mountain (EFHM) in the Ningxia Hui Autonomous Region has attracted great attention recently. Geographically, EFHM is divided into six sub-regions, namely Shizuishan, Xixia, Helan, Qingtongxia, Yongning and Hongsipu. However, there have been few reports on the character and differences between wines in the six sub-regions. In this experiment, a total of 71 commercial Cabernet Sauvignon wines from six sub-regions were collected, and their phenolic compounds, visual properties and mouthfeel were investigated. The results showed that wines from the six sub-regions of EFHM showed distinctive phenolic profiles and could be distinguished through the OPLS-DA mode using 32 potential markers. In terms of color, Shizuishan wines showed higher a* values and lower b* values. The sensory evaluation showed that Hongsipu wines had higher astringency strength and lower tannin texture. The overall results implied that the phenolic compounds of wines in different sub-regions were affected by terroir conditions. To the best of our knowledge, this is the first time that a wide coverage of phenolic compounds has been analysed for wines from the sub-regions of EFHM, which could provide valuable information in deciphering the terroir of EFHM.
Collapse
|
8
|
Wang Z, Chen X, Liu Q, Zhang L, Liu S, Su Y, Ren Y, Yuan C. Untargeted metabolomics analysis based on LC-IM-QTOF-MS for discriminating geographical origin and vintage of Chinese red wine. Food Res Int 2023; 165:112547. [PMID: 36869536 DOI: 10.1016/j.foodres.2023.112547] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/24/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023]
Abstract
Identifying wine geographical origin and vintage is vital due to the abundance of fraudulent activity associated with wine mislabeling of region and vintage. In this study, an untargeted metabolomic approach based on liquid chromatography/ion mobility quadrupole time-of-flight mass spectrometry (LC-IM-QTOF-MS) was used to discriminate wine geographical origin and vintage. Wines were well discriminated according to region and vintage with orthogonal partial least squares-discriminant analysis (OPLS-DA). The differential metabolites subsequently were screened by OPLS-DA with pairwise modeling. 42 and 48 compounds in positive and negative ionization modes were screened as differential metabolitesfor the discrimination of different wine regions, and 37 and 35 compounds were screened for wine vintage. Furthermore, new OPLS-DA models were performed using these compounds, and the external verification trial showed excellent practicality with an accuracy over 84.2%. This study indicated that LC-IM-QTOF-MS-based untargeted metabolomics was a feasible tool for wine geographical origin and vintage discrimination.
Collapse
Affiliation(s)
- Zhaoxiang Wang
- College of Enology, Northwest A&F University, Yangling 712100, China
| | - Xiaoyi Chen
- College of Enology, Northwest A&F University, Yangling 712100, China
| | - Qianqian Liu
- College of Enology, Northwest A&F University, Yangling 712100, China
| | - Lin Zhang
- College of Enology, Northwest A&F University, Yangling 712100, China
| | - Shuai Liu
- College of Enology, Northwest A&F University, Yangling 712100, China
| | - Yingyue Su
- College of Enology, Northwest A&F University, Yangling 712100, China
| | - Yamei Ren
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China.
| | - Chunlong Yuan
- College of Enology, Northwest A&F University, Yangling 712100, China; Ningxia Helan Mountain's East Foothill Wine Experiment and Demonstration Station of Northwest A&F University, Yongning, Ningxia 750104, China.
| |
Collapse
|
9
|
Ren Y, Sadeghnezhad E, Leng X, Pei D, Dong T, Zhang P, Gong P, Jia H, Fang J. Assessment of 'Cabernet Sauvignon' Grape Quality Half-Véraison to Maturity for Grapevines Grown in Different Regions. Int J Mol Sci 2023; 24:ijms24054670. [PMID: 36902101 PMCID: PMC10002954 DOI: 10.3390/ijms24054670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/04/2023] Open
Abstract
Grapes are widely cultivated around the world and their quality has distinct regional characteristics. In this study, the qualitative characteristics of the 'Cabernet Sauvignon' grape variety in seven regions, from half-véraison to maturity, were analyzed comprehensively at physiological and transcriptional levels. The results indicated that the quality traits of 'Cabernet Sauvignon' grapes in different regions were significantly different with obvious regionality. Total phenols, anthocyanins, and titratable acids were the main factors of the regionality of berry quality, which were very sensitive to changes in the environment. It should be noted that the changes in titrating acids and total anthocyanin of berries vary greatly from half-véraison to maturity between regions. Moreover, the transcriptional analysis showed that the co-expressed genes between regions characterized the core transcriptome of berry development, while the unique genes of each region reflected the regionality of berries. The differentially expressed genes (DEGs) between half-véraison and maturity can be used to demonstrate that the environment of the regions could promote or inhibit gene expression. The functional enrichment suggested that these DEGs help to understand the interpretation of the plasticity of the quality composition of grapes according to the environment. Taken together, the information generated by this study could contribute to the development of viticultural practices aimed at making better use of native varieties for the development of wines with regional characteristics.
Collapse
Affiliation(s)
- Yanhua Ren
- Key Laboratory of Genetics and Fruit Development, Horticultural College, Nanjing Agricultural University, Nanjing 210095, China
| | - Ehsan Sadeghnezhad
- Key Laboratory of Genetics and Fruit Development, Horticultural College, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiangpeng Leng
- Horticultural College, Qingdao Agricultural University, Qingdao 266109, China
| | - Dan Pei
- Key Laboratory of Genetics and Fruit Development, Horticultural College, Nanjing Agricultural University, Nanjing 210095, China
| | - Tianyu Dong
- Key Laboratory of Genetics and Fruit Development, Horticultural College, Nanjing Agricultural University, Nanjing 210095, China
| | - Peian Zhang
- Key Laboratory of Genetics and Fruit Development, Horticultural College, Nanjing Agricultural University, Nanjing 210095, China
| | - Peijie Gong
- Key Laboratory of Genetics and Fruit Development, Horticultural College, Nanjing Agricultural University, Nanjing 210095, China
| | - Haifeng Jia
- Key Laboratory of Genetics and Fruit Development, Horticultural College, Nanjing Agricultural University, Nanjing 210095, China
| | - Jinggui Fang
- Key Laboratory of Genetics and Fruit Development, Horticultural College, Nanjing Agricultural University, Nanjing 210095, China
- Horticultural College, Qingdao Agricultural University, Qingdao 266109, China
- Correspondence:
| |
Collapse
|
10
|
Zhang L, Liu Q, Li Y, Liu S, Tu Q, Yuan C. Characterization of wine volatile compounds from different regions and varieties by HS-SPME/GC-MS coupled with chemometrics. Curr Res Food Sci 2022; 6:100418. [PMID: 36588783 PMCID: PMC9801081 DOI: 10.1016/j.crfs.2022.100418] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
HS-SPME/GC-MS and aroma descriptive analysis were used to gain insights into the volatile and sensory details of 99 red wine samples collected from four varieties in five regions. The general volatile fingerprints of Cabernet Sauvignon and Merlot wine samples in Xinjiang and Ningxia regions were similar, even though chemometric models could not discriminate between them. The main drivers of the diversity were secondary metabolites of grape such as terpenes, benzene-derivatives, and ketones. Fermentation-derivatives (esters and alcohols) were also responsible for region and variety-related differences in wines. Analysis of volatile compounds also showed that the primary factor accounting for diversity in wines in this study was region rather than variety. These results highlight the sensory attributes and volatiles of different regions and varieties, and provide a quantitative basis for screening for differential metabolites and potential markers in wines.
Collapse
Affiliation(s)
- Lin Zhang
- College of Enology, Northwest A&F University, Yangling, 712100, China
| | - Qianqian Liu
- College of Enology, Northwest A&F University, Yangling, 712100, China
| | - Yuanyuan Li
- College of Enology, Northwest A&F University, Yangling, 712100, China
| | - Shuzhen Liu
- College of Enology, Northwest A&F University, Yangling, 712100, China
| | - Qian Tu
- College of Enology, Northwest A&F University, Yangling, 712100, China
| | - Chunlong Yuan
- College of Enology, Northwest A&F University, Yangling, 712100, China,Ningxia Helan Mountain's East Foothill Wine Experiment and Demonstration Station of Northwest A&F University, Yongning, Ningxia, 750104, China,Corresponding author. College of Enology, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
11
|
Volatile Profiles and Sensory Characteristics of Cabernet Sauvignon Dry Red Wines in the Sub-Regions of the Eastern Foothills of Ningxia Helan Mountain in China. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248817. [PMID: 36557951 PMCID: PMC9782302 DOI: 10.3390/molecules27248817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/05/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022]
Abstract
To elucidate the effects of the different terroir on wine aroma in six sub-regions of Eastern Foothills of Helan Mountain in Ningxia, a premium wine-producing region in China, 71 Cabernet Sauvignon wines were investigated by gas chromatography-mass spectrometry (GC-MS), check-all-that-apply (CATA), and quantitative descriptive analysis (QDA). The bidirectional orthogonal partial least squares-discriminant analysis (O2PLS-DA) results showed that the Cabernet Sauvignon dry red wines from Xixia (XX) and Yongning (YN) had similar volatile profiles due to their geographical proximity and were characterized by higher concentrations of esters, higher alcohols, and volatile phenols because the similar aromatic profiles were detected in their dry red wines. Shizuishan (SZS) and Hongsipu (HSP) wines showed clear differences compared to the wines of the other four sub-regions, being mainly characterized by relatively higher phenolic aldehydes and volatile phenols. The concentrations of methoxypyrazines and norisoprenoids varied mainly depending on the climate diversity of the sub-regions. The highest 3-isobutyl-2-methoxypyrazine (IBMP) concentration was presented in the Helan (HL) wines. The Qingtongxia (QTX) wines have the highest β-damascenone, which might be influenced by the fact that QTX has the lowest effective accumulated temperature and the highest sunshine duration among the five sub-regions. Esters including ethyl octanoate, ethyl decanoate, ethyl butanoate, ethyl hexanoate, and isoamyl acetate were the highest in HL. Additionally, the herbaceous, black berry, and red berry notes in HL and QTX were the most outstanding.
Collapse
|
12
|
Bacterial Communities Related to Aroma Formation during Spontaneous Fermentation of ‘Cabernet Sauvignon’ Wine in Ningxia, China. Foods 2022; 11:foods11182775. [PMID: 36140903 PMCID: PMC9497756 DOI: 10.3390/foods11182775] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/03/2022] [Accepted: 09/06/2022] [Indexed: 12/03/2022] Open
Abstract
Bacteria are an important part of wine ‘microbial terroir’ and contribute to the formation of wine flavor. Based on high-throughput sequencing and non-targeted metabonomic technology, this study first explored the bacterial composition and its effect on the aroma formation of spontaneously fermented ‘Cabernet Sauvignon’ (CS) wine in the Eastern Foot of Helan Mountain (EFHM), Ningxia. The results showed that there were significant differences in bacterial communities during fermentation of CS grapes harvested from different sub-regions of EFHM, with the earlier-established vineyard obtaining more species. The level of bacterial diversity initially decreased and then increased as the fermentation proceeded. Malolactic fermentation (MLF) was spontaneously initiated during alcohol fermentation (AF). Pantoea, Lactobacillus, Rhodococcus, Fructobacillus, and Komagataeibacter were the core bacterial genera in the fermentation mixture. Lactobacillus contributed to the synthesis of methyl and isobutyl esters and the formation of red and black fruity fragrances of wine. Fructobacillus was closely related to the synthesis of aromatic alcohols and the generation of floral flavors.
Collapse
|
13
|
Kahraman M, Karahan AG, Terzioğlu ME. Characterization of Some Microorganisms from Human Stool Samples and Determination of Their Effects on CT26 Colorectal Carcinoma Cell Line. Curr Microbiol 2022; 79:225. [PMID: 35704105 DOI: 10.1007/s00284-022-02915-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 05/23/2022] [Indexed: 12/26/2022]
Abstract
The present study aimed to isolate and identify the potential probiotic, pathobiont, and pathogenic microorganisms in the stool samples of 12 healthy individuals and evaluate their in vitro effects on cancer formation. A total of 83 strains were isolated from the stool samples and identified using MALDI-Biotyper. Fourteen of the isolates were identified as Candida spp., three isolates were identified as Cryptococcus neoformans, 55 isolates were identified as lactic acid bacteria, and the remaining isolates belonged to different 11 bacterial genera. Important microbial properties for cancer prevention and some probiotic properties were examined. All strains maintained their viability under acidic conditions and in media containing bile salts. Of the bacterial strains, 62.5% were resistant to ampicillin, chloramphenicol, gentamicin, erythromycin, kanamycin, penicillin, streptomycin, tetracycline, and vancomycin. All yeast strains were resistant to ketoconazole and susceptible to nystatin. The susceptibility of the strains to fluconazole, voriconazole, amphotericin B, and itraconazole varied. Fifty-nine percent of the strains produced EPS and 21.7% showed proteolytic activity (PA). Of the strains, 15.7% both produced exopolysaccharides (EPS) and had PA. The antioxidant activity (AOA) varied depending on the strains. The pathobiont and pathogenic microorganisms promoted tumor formation, while potential probiotic microorganisms had a suppressive effect on tumor formation (P > 0.01). One yeast (Candida kefyr MK17) and three lactic acid bacteria strains (Lacticaseibacillus paracasei MK73, Lactiplantibacillus plantarum MK55, Limosilactobacillus mucosae MK45) have superior potential thanks to their anticarcinogenic properties as well as tolerance to gastrointestinal tract conditions. Stool samples of each individual contain various potential probiotic, pathobiont, and pathogenic microorganisms.
Collapse
Affiliation(s)
- Münevver Kahraman
- Department of Food Engineering, Faculty of Engineering, Süleyman Demirel University, Isparta, Turkey
| | - Aynur Gül Karahan
- Department of Food Engineering, Faculty of Engineering, Süleyman Demirel University, Isparta, Turkey.
| | | |
Collapse
|