1
|
Wang H, Li Q, Yang M, Wang H, Wang M, Lin L, Lu J. High-Quality Application of Crayfish Muscle in Surimi Gels: Fortification of Blended Gels by Transglutaminase. Gels 2025; 11:204. [PMID: 40136908 PMCID: PMC11941840 DOI: 10.3390/gels11030204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/09/2025] [Accepted: 03/12/2025] [Indexed: 03/27/2025] Open
Abstract
The application of crayfish muscle in surimi products is a potential way to promote their processing and ensure that it is of a high value. In this study, a one-way completely randomized design was used to prepare mixed surimi gels with different proportions of crayfish muscle. The effect of transglutaminase (TGase) on the improvement in the structural properties, water-binding capacity, micromorphology and protein conformation of blended gels was explored using mass spectrometry, centrifugation, scanning electron microscopy, and Fourier transform infrared spectroscopy. The results of thus study were analyzed by one-way ANOVA showed that in the absence of TGase, crayfish muscle made the microstructure of the blended gel looser and rougher, with a reduction in the strength of the gel and a decrease in the water holding capacity. The addition of 0.6% TGase was able to ameliorate this negative effect by promoting the formation of key chemical bonds and changes in protein conformation, which ultimately led to the enhancement of the crayfish-surimi blended gel properties. Practically, this study provides a viable strategy for incorporating crayfish into surimi products, enabling the development of novel, high-quality seafood products with improved texture and moisture retention, thereby enhancing consumer appeal and reducing waste in crayfish processing.
Collapse
Affiliation(s)
- Hongyi Wang
- Engineering Research Center of Bio-Process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; (H.W.); (Q.L.); (M.Y.); (H.W.); (M.W.)
- Anhui Province Key Laboratory for Agriculture Products Modern Processing, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Qiang Li
- Engineering Research Center of Bio-Process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; (H.W.); (Q.L.); (M.Y.); (H.W.); (M.W.)
- Anhui Province Key Laboratory for Agriculture Products Modern Processing, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Mengru Yang
- Engineering Research Center of Bio-Process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; (H.W.); (Q.L.); (M.Y.); (H.W.); (M.W.)
- Anhui Province Key Laboratory for Agriculture Products Modern Processing, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Hong Wang
- Engineering Research Center of Bio-Process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; (H.W.); (Q.L.); (M.Y.); (H.W.); (M.W.)
- Anhui Province Key Laboratory for Agriculture Products Modern Processing, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Mengtao Wang
- Engineering Research Center of Bio-Process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; (H.W.); (Q.L.); (M.Y.); (H.W.); (M.W.)
- Anhui Province Key Laboratory for Agriculture Products Modern Processing, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Lin Lin
- Engineering Research Center of Bio-Process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; (H.W.); (Q.L.); (M.Y.); (H.W.); (M.W.)
- Anhui Province Key Laboratory for Agriculture Products Modern Processing, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Jianfeng Lu
- Engineering Research Center of Bio-Process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; (H.W.); (Q.L.); (M.Y.); (H.W.); (M.W.)
- Anhui Province Key Laboratory for Agriculture Products Modern Processing, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
2
|
Zhang C, Lu M, Chen L, Ma L, Huang M, Chen L, El-Seedi HRA, Teng H. Modulation of gel characteristics in surimi-curdlan gel system by different valence metal cations: Mechanical properties, ionic distribution and microstructure visualization. Int J Biol Macromol 2025; 290:138600. [PMID: 39662573 DOI: 10.1016/j.ijbiomac.2024.138600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/13/2024] [Accepted: 12/07/2024] [Indexed: 12/13/2024]
Abstract
The valence state of metal cations is a potential factor in regulating the structural properties of surimi gels. In this study, Surimi-Curdlan dual network (SCDN) gel was prepared by NaCl, KCl, CaCl2, and MgCl2, combined with the concept of dual network hydrogel. The effects of different valence metal cations on mechanical properties, water state, microstructure, protein structure and composition of SCDN gel were studied. The results showed that the monovalent metal cations conferred higher G' and G" to the SCDN gel and promoted the unfolding of the α-helix structure in the proteins, providing more binding sites for adequate binding of protein and curdlan. It also increased the compatibility of proteins and curdlan, forming a regular and tight three-dimensional network structure. The monovalent metal cations enhanced the gel's mechanical properties such as strength and hardness, and retained more water through the net-trapping effect. However, the divalent metal cation-mediated SCDN gels had low G' and G", inadequate unfolding of the protein secondary structure and the aggregates formed by each of them were dispersed in the gel system, resulting in an inhomogeneous gel structure and texture. This structural feature reduced water retention and gel strength. After comprehensive comparative analysis, K+ has the potential to replace Na+ in preparing SCDN gel. This study provides some insights into the development of sodium alternatives for the surimi gel industry.
Collapse
Affiliation(s)
- Chang Zhang
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China
| | - Minxin Lu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China
| | - Lei Chen
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China; Shenzhen Institute of Guangdong Ocean University, Shenzhen, Guangdong, China
| | - Linyin Ma
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China; Shenzhen Institute of Guangdong Ocean University, Shenzhen, Guangdong, China
| | - Minxi Huang
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China; Shenzhen Institute of Guangdong Ocean University, Shenzhen, Guangdong, China
| | - Lele Chen
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China; Shenzhen Institute of Guangdong Ocean University, Shenzhen, Guangdong, China
| | | | - Hui Teng
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China; Shenzhen Institute of Guangdong Ocean University, Shenzhen, Guangdong, China.
| |
Collapse
|
3
|
Bao L, Yang R, Diao D, Tian F, Chen Y, Zheng B, Gao P, Zhao Y. Reheating-induced gel properties change and flavor evolution of surimi-based seafood: Effects and mechanisms. Food Chem 2025; 464:141466. [PMID: 39406135 DOI: 10.1016/j.foodchem.2024.141466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/01/2024] [Accepted: 09/27/2024] [Indexed: 11/21/2024]
Abstract
This study investigated the effect of different reheating treatments on gel properties and flavor changes of surimi products. As the reheating temperature increased from 90 °C to 121 °C, the heat-induced proteolysis produced more abundant umami and sweet amino acids, which took part in the conversion of IMP to AMP, thus enhancing the taste profiles. Reheating increased the exposure of active -NH2 terminals in proteins, which boosted Maillard and Strecker reactions with carbonyl compounds originated from fatty acid oxidation, thus not only reducing the aldehydes and esters contents but also lowering the whiteness of surimi products. Reheating at 90 °C prohibited the production of warmed-over flavor (WOF) and well-preserved the textural characteristics, but high temperatures ≥100 °C were prone to generate furan as the major WOF substance and to destroy gel structures. Collectively, this study provides new insights on understanding the role of reheating on sensory properties of surimi products.
Collapse
Affiliation(s)
- Lingxiang Bao
- School of Food and Pharmacy, Zhejiang Ocean University, 316022 Zhoushan, China
| | - Ruizhi Yang
- School of Food and Pharmacy, Zhejiang Ocean University, 316022 Zhoushan, China
| | - Dieynabou Diao
- School of Food and Pharmacy, Zhejiang Ocean University, 316022 Zhoushan, China
| | - Fang Tian
- School of Food and Pharmacy, Zhejiang Ocean University, 316022 Zhoushan, China
| | - Yingyun Chen
- School of Food and Pharmacy, Zhejiang Ocean University, 316022 Zhoushan, China
| | - Bin Zheng
- School of Food and Pharmacy, Zhejiang Ocean University, 316022 Zhoushan, China
| | - Pingping Gao
- Faculty of Applied Sciences, Universiti Teknologi MARA, 94300 Kota Samarahan, Sarawak, Malaysia
| | - Yadong Zhao
- School of Food and Pharmacy, Zhejiang Ocean University, 316022 Zhoushan, China; School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 10044 Stockholm, Sweden.
| |
Collapse
|
4
|
Yang R, Juma NS, Zhao Y, Zheng B, Xu Y, Gao Y, Jia R, Gao P, He Y. Factors influencing surimi gelling properties and natural additive-based gel fortification strategies: A review. Compr Rev Food Sci Food Saf 2025; 24:e70067. [PMID: 39776157 DOI: 10.1111/1541-4337.70067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/01/2024] [Accepted: 11/01/2024] [Indexed: 01/11/2025]
Abstract
Gelation and gel properties are crucial to surimi-based seafood products, and many factors significantly influence surimi gel quality. Although physical and chemical modifications can improve surimi gel performance, challenges such as high cost, difficulties in industrialization and environmental pollution pose significant barriers to their practicality. Natural additives offer a promising alternative by reinforcing and improving the characteristics of surimi gel through mechanisms such as protein conformational transformation, protein denaturation, and altered chemical forces. By incorporating different substances into surimi gel, it is possible to tune the interaction between the additives and the myofibrillar proteins, thus enhancing the gelation process and achieving the desired textural profiles. This review comprehensively explored the factors influencing the surimi gelation chemistry, with a focus on how the natural additives such as proteins, lipids, polysaccharides, salts, enzymes, and extracts impact the surimi gel properties. It elucidated the reinforcing mechanisms of these additives and proposed a general interaction model between natural substance and myofibrillar proteins. Furthermore, this review well established the interrelation between the performance and mechanism of enhancement effects of typical natural substances on surimi gels and provided new insights on tuning surimi gelation and gel properties by adding natural additives with specific physicochemical properties, thus facilitating the production of high-quality surimi products with satisfactory gel characteristics in food industry.
Collapse
Affiliation(s)
- Ruizhi Yang
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Nasra Seif Juma
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Yadong Zhao
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
- School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Bin Zheng
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Yan Xu
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Yuanpei Gao
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Ru Jia
- College of Food and Pharmaceutical Science, Ningbo University, Ningbo, China
| | - Pingping Gao
- Faculty of Applied Sciences, Universiti Teknologi MARA, Kota Samarahan, Sarawak, Malaysia
| | - Yanhong He
- Aquatic Products Processing Factory of China National Zhoushan Marine Fisheries Company, Zhoushan, China
| |
Collapse
|
5
|
Lv Y, Wang X, Hao R, Zhang X, Xu X, Li S, Dong X, Pan J. The Effects of Cooking Methods on Gel Properties, Lipid Quality, and Flavor of Surimi Gels Fortified with Antarctic Krill ( Euphausia superba) Oil as High Internal Phase Emulsions. Foods 2024; 13:4070. [PMID: 39767021 PMCID: PMC11675233 DOI: 10.3390/foods13244070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/13/2024] [Accepted: 12/14/2024] [Indexed: 01/11/2025] Open
Abstract
In this study, silver carp surimi products enriched with Antarctic krill oil high internal phase emulsions (AKO-HIPEs) were cooked using steaming (STE), microwave heating (MIC), and air-frying (AIR), respectively. The gel and flavor properties, lipid quality and stability were investigated. Compared to the MIC and AIR groups, the STE surimi gel added with HIPEs had better texture properties, exhibiting higher water-holding capacity and a more homogeneous structure, while the air-frying treatment resulted in visually brighter surimi products. The degree of lipid oxidation during cooking was in an order of STE < MIC < AIR as determined by electron paramagnetic resonance spectrometer and thiobarbituric acid reactive substances. HIPE-added surimi gels retained more nutrients and flavor when cooked by AIR compared to STE and MIC. Results imply that the texture properties and lipid stability of surimi products fortified with AKO-HIPEs were better than those of the oil group under any cooking method. In conclusion, surimi products added with AKO-HIPEs had better gel properties and retained more fatty acids and flavor than AKO-SO.
Collapse
Affiliation(s)
- Yinyin Lv
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center for Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-Construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian Technology Innovation Center for Chinese Pre-made Food, College of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (Y.L.); (X.W.); (X.Z.); (X.X.); (S.L.); (X.D.)
| | - Xiuqin Wang
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center for Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-Construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian Technology Innovation Center for Chinese Pre-made Food, College of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (Y.L.); (X.W.); (X.Z.); (X.X.); (S.L.); (X.D.)
| | - Ruoyi Hao
- Department of Food Science and Technology, School of Forestry, Beihua University, Jilin 132013, China;
| | - Xianhao Zhang
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center for Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-Construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian Technology Innovation Center for Chinese Pre-made Food, College of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (Y.L.); (X.W.); (X.Z.); (X.X.); (S.L.); (X.D.)
| | - Xianbing Xu
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center for Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-Construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian Technology Innovation Center for Chinese Pre-made Food, College of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (Y.L.); (X.W.); (X.Z.); (X.X.); (S.L.); (X.D.)
| | - Shengjie Li
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center for Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-Construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian Technology Innovation Center for Chinese Pre-made Food, College of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (Y.L.); (X.W.); (X.Z.); (X.X.); (S.L.); (X.D.)
| | - Xiuping Dong
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center for Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-Construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian Technology Innovation Center for Chinese Pre-made Food, College of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (Y.L.); (X.W.); (X.Z.); (X.X.); (S.L.); (X.D.)
| | - Jinfeng Pan
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center for Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-Construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian Technology Innovation Center for Chinese Pre-made Food, College of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (Y.L.); (X.W.); (X.Z.); (X.X.); (S.L.); (X.D.)
| |
Collapse
|
6
|
Zhang S, Song Z, Gu J, Guo X, Wan Y, Tian H, Wang X. Effect of Soy Protein Isolate on the Quality Characteristics of Silver Carp Surimi Gel during Cold Storage. Foods 2024; 13:2370. [PMID: 39123561 PMCID: PMC11311264 DOI: 10.3390/foods13152370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/15/2024] [Accepted: 07/19/2024] [Indexed: 08/12/2024] Open
Abstract
This study mainly investigated the effect of soy protein isolate (SPI) on the gel quality of silver carp surimi under different storage conditions (storage temperatures of 4 °C, -20 °C, and -40 °C, and storage times of 0, 15, and 30 d). The results found that 10% SPI could inhibit the growth of ice crystals, improve the water distribution, enhance the water holding capacity of the gels, and strengthen the interaction between surimi and proteins. Compared to the control group, the composite silver carp surimi gel exhibited superior quality in texture, chemical interactions, and rheological properties during cold storage. Fourier transform infrared spectroscopy revealed an increasing trend in α-helix and β-turn content and a decreasing trend of β-sheet and random coil content. As storage time increased, the gel deterioration during cold storage inhibitory effect of the treatment group was superior to the control group, with the best results observed at -40 °C storage conditions. Overall, SPI was a good choice for maintaining the quality of silver carp surimi gel during cold storage, which could significantly reduce the changes in the textural properties during cold storage with improved water holding capacity.
Collapse
Affiliation(s)
- Songxing Zhang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (S.Z.); (Z.S.); (J.G.)
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai 201306, China
| | - Zeyu Song
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (S.Z.); (Z.S.); (J.G.)
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai 201306, China
| | - Junhao Gu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (S.Z.); (Z.S.); (J.G.)
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai 201306, China
| | - Xueqian Guo
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 201306, China;
| | - Yangling Wan
- Wilmar Shanghai Biotechnology Research and Development Center Co., Ltd., Shanghai 200120, China;
| | - Huaixiang Tian
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Xichang Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (S.Z.); (Z.S.); (J.G.)
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai 201306, China
| |
Collapse
|
7
|
Zhu X, Yang C, Song Y, Qiang Y, Han D, Zhang C. Changes provoked by altitudes and cooking methods in physicochemical properties, volatile profile, and sensory characteristics of yak meat. Food Chem X 2023; 20:101019. [PMID: 38144763 PMCID: PMC10739933 DOI: 10.1016/j.fochx.2023.101019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/28/2023] [Accepted: 11/19/2023] [Indexed: 12/26/2023] Open
Abstract
The present study aimed to shed light on the effects of altitudes and three cooking methods (boiling, steaming, and roasting) on the physicochemical quality, volatile profile, and sensorial characteristics of yak meat. Composite meat samples were prepared to represent each cooking method and altitude level from the longissimus thoracis et lumborum (LTL) muscle of nine yaks. The techniques employed were gas chromatography-mass spectrometry (GC-MS) and electronic nose (E-nose) along with chemometrics analysis to study the changes occurring in yak volatile profile, and TBARS measurement in lipid oxidation during cooking. Among the cooking methods, boiling and steaming exhibited higher protein and fat content while lower volatile compound contents. Additionally, roasted yak meat received the highest sensory scores, along with decreased L*-values, while elevated a*- and b*-values, and tenderness. A total of 138 volatile compounds were detected, and among them, 36 odorants were identified as odor-active compounds in cooked yak meat. It is evidenced that low-altitude yak presented more complex and richer flavor profiles than high-altitude ones. Moreover, yak meat from low- and high-altitude was classified into two groups by an electronic nose (E-nose) owing to distinct flavor characteristics. Overall, roasted yak meat originating from low altitudes tends to be more popular from a sensory perspective.
Collapse
Affiliation(s)
- Xijin Zhu
- Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, Gansu 7301070, PR China
| | - Chao Yang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, Gansu 7301070, PR China
- College of Food Science and Technology, Southwest Minzu University, Chengdu, Sichuan 610041, PR China
| | - Yu Song
- Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Yu Qiang
- Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Dong Han
- Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Chunhui Zhang
- Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| |
Collapse
|
8
|
Zhong Q, Wang Y, Tian Y, Zhuang Y, Yang H. Effects of anthocyanins and microbial transglutaminase on the physicochemical properties of silver carp surimi gel. J Texture Stud 2023; 54:541-549. [PMID: 36918727 DOI: 10.1111/jtxs.12750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 03/16/2023]
Abstract
The objective of this study was to investigate effects of anthocyanins (AC) and microbial transglutaminase (MTGase) on the physicochemical properties of surimi gels from silver carp. The addition of AC and MTGase significantly increased gel strength and water holding capacity (WHC) of surimi gels, but the effect of MTGase was much stronger (p < .05). There were the highest gel strength, storage modulus (G') and WHC with 0.1 g/100 g AC and 0.4 g/100 g MTGase, while they were higher than that with AC or MTGase alone. AC promoted the cross-linking mainly by covalent and non-covalent bonds in surimi gels, while MTGase did mainly through covalent bonds. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) confirmed the results of gel strength, WHC, chemical interactions and G' of surimi gel or paste with AC and MTGase. In general, AC and MTGase could synergistically improve the physicochemical properties of surimi gels and potentially enhance the quality of surimi-based product from silver carp.
Collapse
Affiliation(s)
- Qian Zhong
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Yudong Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Yuxin Tian
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Yang Zhuang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Hong Yang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan, Hubei, 430070, China
- National R&D Branch Center for Conventional Freshwater Fish Processing (Wuhan), Wuhan, Hubei, 430070, China
- Aquatic Product Engineering and Technology Research Center of Hubei Province, Wuhan, Hubei, 430070, China
| |
Collapse
|
9
|
Li XX, Li ZY, Zhu W, Wang YQ, Liang YR, Wang KR, Ye JH, Lu JL, Zheng XQ. Anthocyanin metabolism and its differential regulation in purple tea (Camellia sinensis). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107875. [PMID: 37451003 DOI: 10.1016/j.plaphy.2023.107875] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/17/2023] [Accepted: 06/29/2023] [Indexed: 07/18/2023]
Abstract
Tea plants (Camellia sinensis) typically contain high-flavonoid phytochemicals like catechins. Recently, new tea cultivars with unique purple-colored leaves have gained attention. These purple tea cultivars are enriched with anthocyanin, which provides an interesting perspective for studying the metabolic flux of the flavonoid pathway. An increasing number of studies are focusing on the leaf color formation of purple tea and this review aims to summarize the latest progress made on the composition and accumulation of anthocyanins in tea plants. In addition, the regulation mechanism in its synthesis will be discussed and a hypothetical regulation model for leaf color transformation during growth will be proposed. Some novel insights are presented to facilitate future in-depth studies of purple tea to provide a theoretical basis for targeted breeding programs in leaf color.
Collapse
Affiliation(s)
- Xiao-Xiang Li
- Tea Research Institute, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| | - Ze-Yu Li
- Tea Research Institute, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| | - Wan Zhu
- Tea Research Institute, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| | - Ying-Qi Wang
- Tea Research Institute, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| | - Yue-Rong Liang
- Tea Research Institute, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| | - Kai-Rong Wang
- General Agrotechnical Extension Station of Ningbo City, Ningbo, Zhejiang, 315000, China.
| | - Jian-Hui Ye
- Tea Research Institute, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| | - Jian-Liang Lu
- Tea Research Institute, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| | - Xin-Qiang Zheng
- Tea Research Institute, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
10
|
Li W, Wen L, Xiong S, Xiao S, An Y. Investigation of the effect of chemical composition of surimi and gelling temperature on the odor characteristics of surimi products based on gas chromatography-mass spectrometry/olfactometry. Food Chem 2023; 420:135977. [PMID: 37037112 DOI: 10.1016/j.foodchem.2023.135977] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 03/06/2023] [Accepted: 03/16/2023] [Indexed: 04/07/2023]
Abstract
This study investigated the effects of chemical composition of surimi (prepared by 0, 1, or 2 times of rinsing) and gelling temperature (90 °C and 100 °C) on the odor characteristics of surimi products and the relationship between the chemical composition of surimi and the aroma of surimi products. The once- and twice-rinsed surimi showed a decrease (p < 0.05) of 71.32%, 74.60%, 42.79% and 61.12% in the contents of total amino acids and total fatty acids, respectively. The surimi products prepared with un-rinsed surimi at 90 °C had the highest fish-fragrance score, while those prepared with once-rinsed surimi at 100 °C showed the strongest warmed-over flavor (WOF) and the lowest fish-fragrance score.Gly, Phe, and most of the saturated fatty acids were associated with WOF formation in surimi products, while Leu, Ile, Val, Asp, and unsaturated fatty acids were positively related to their fish-fragrance note.
Collapse
Affiliation(s)
- Wenrong Li
- College of Food Science and Technology/National R&D Branch Center for Conventional Freshwater Fish Processing (Wuhan), Huazhong Agricultural University, Wuhan, Hubei Province 430070, PR China
| | - Li Wen
- College of Food Science and Technology/National R&D Branch Center for Conventional Freshwater Fish Processing (Wuhan), Huazhong Agricultural University, Wuhan, Hubei Province 430070, PR China
| | - Shanbai Xiong
- College of Food Science and Technology/National R&D Branch Center for Conventional Freshwater Fish Processing (Wuhan), Huazhong Agricultural University, Wuhan, Hubei Province 430070, PR China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, Hubei Province 430070, PR China; College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei Province 430070, PR China
| | - Shuting Xiao
- College of Food Science and Technology/National R&D Branch Center for Conventional Freshwater Fish Processing (Wuhan), Huazhong Agricultural University, Wuhan, Hubei Province 430070, PR China
| | - Yueqi An
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, Hubei Province 430070, PR China; College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei Province 430070, PR China.
| |
Collapse
|