1
|
Praphasanobol P, Chokwiwatkul R, Habila S, Chantawong Y, Buaboocha T, Comai L, Chadchawan S. Effects of Salt Stress at the Booting Stage of Grain Development on Physiological Responses, Starch Properties, and Starch-Related Gene Expression in Rice ( Oryza sativa L.). PLANTS (BASEL, SWITZERLAND) 2025; 14:885. [PMID: 40265802 PMCID: PMC11944574 DOI: 10.3390/plants14060885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 03/07/2025] [Accepted: 03/09/2025] [Indexed: 04/24/2025]
Abstract
Here, we investigated physiological responses, yield components, starch properties, and starch biosynthesis genes in five Thai rice (Oryza sativa L.) cultivars (SPR1, Hawm Daeng, RD43, RD69, and PTT1) with distinct starch characteristics under salt stress. Salt stress decreased flag leaf greenness (SPAD), normalized difference vegetation index (NDVI) levels, and carotenoid reflectance index 1 (CRI1) levels in all cultivars, resulting in reduced net photosynthesis, transpiration rates, and yield components across all cultivars, with Hawm Daeng and PTT1 being most susceptible. In contrast, RD69 and SPR1 were more tolerant, exhibiting recovered chlorophyll fluorescence levels and total performance index values after 3 days. Salt stress reduced apparent amylose content (AAC) and increased rapidly available glucose (RAG) levels in all cultivars. Granule-bound starch synthase I (GBSSI) expression declined the most in PTT1 and Hawm Daeng. SPAD, NDVI, CRI1, and photosynthetic parameters were correlated with GBSSI expression at the milky and dough stages of grain development. GBSSI expression levels showed little to no correlation with slowly available glucose but correlated with resistant starch levels at the booting stage of grain development. Salt stress affected yield components and rice starch quality, with variations depending on salt susceptibility, which in turn affected GBSSI expression levels during the milky and dough stages of grain development.
Collapse
Affiliation(s)
- Parama Praphasanobol
- Biological Sciences Program, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand;
- Center of Excellence in Environment and Plant Physiology, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; (R.C.); (S.H.); (Y.C.)
| | - Ratchata Chokwiwatkul
- Center of Excellence in Environment and Plant Physiology, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; (R.C.); (S.H.); (Y.C.)
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand
| | - Susinya Habila
- Center of Excellence in Environment and Plant Physiology, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; (R.C.); (S.H.); (Y.C.)
- Department of Plant Science and Biotechnology, Faculty of Natural Science, University of Jos, Jos North 930003, Nigeria
| | - Yosita Chantawong
- Center of Excellence in Environment and Plant Physiology, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; (R.C.); (S.H.); (Y.C.)
| | - Teerapong Buaboocha
- Omics Sciences and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand;
- Center of Excellence in Molecular Crop, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Luca Comai
- Department of Plant Biology and Genome Center, University of California Davis, Davis, CA 95616, USA;
| | - Supachitra Chadchawan
- Center of Excellence in Environment and Plant Physiology, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; (R.C.); (S.H.); (Y.C.)
- Omics Sciences and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand;
| |
Collapse
|
2
|
Zhou C, Hu Y, Zhou Y, Yu H, Li B, Yang W, Zhai X, Wang X, Liu J, Wang J, Liu S, Cai J, Shi J, Zou X. Air and argon cold plasma effects on lipolytic enzymes inactivation, physicochemical properties and volatile profiles of lightly-milled rice. Food Chem 2024; 445:138699. [PMID: 38359566 DOI: 10.1016/j.foodchem.2024.138699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 01/17/2024] [Accepted: 02/05/2024] [Indexed: 02/17/2024]
Abstract
This study investigated the effectiveness of cold-plasma treatment using air and argon as input gas on deactivation of lipolytic enzymes in lightly-milled-rice (LMR). The results showed no significant inactivation in lipase and lipoxygenase using air-plasma. However, using argon as input gas, the residual activities of lipase and lipoxygenase were reduced to 64.51 % and 29.15 % of initial levels, respectively. Argon plasma treatment resulted in more substantial augmentation in peak and breakdown viscosities of LMR starch, suggesting an enhancement in palatability of cooked LMR with increased stickiness and decreased hardness. In contrast to the decrease in volatile compounds in LMR following argon plasma treatment, the concentrations of several prevalent aroma compounds, including 1-hexanol, 1-hexanal, and 2-pentylfuran, exhibited significant increments, reaching 1489.70 ng/g, 3312.10 ng/g, and 58.80 ng/g, respectively. These findings suggest the potential for enhancing various facets of the commercial qualities of LMR by utilizing different input gases during plasma treatment.
Collapse
Affiliation(s)
- Chenguang Zhou
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China; Jiangsu Kings Luck Brewer Co Ltd, Lianshui 223411, China
| | - Yuqian Hu
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yaojie Zhou
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Haoran Yu
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Bin Li
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Wenli Yang
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xiaodong Zhai
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xin Wang
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Jie Liu
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology and Business University, Beijing 100048, China
| | - Jing Wang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology and Business University, Beijing 100048, China
| | - Siyao Liu
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Jianrong Cai
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Jiyong Shi
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Xiaobo Zou
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| |
Collapse
|
3
|
Yang R, Tang J, Zhao Q, Piao Z, Lee G, Wan C, Bai J. Starch Properties of Roasting Rice from Naturally High-Resistant Starch Rice Varieties. Molecules 2023; 28:6408. [PMID: 37687237 PMCID: PMC10490166 DOI: 10.3390/molecules28176408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023] Open
Abstract
This study investigates the effects of moisture content control on the characteristics, properties, and in vitro starch digestion of roasted rice powder made from natural high-resistant starch (RS) rice varieties. The results demonstrate that adjusting the moisture content before roasting significantly affects the RS content of the roasted rice powder. Among various moisture levels tested, the addition of 15% water (rice-to-water ratio of 85:15) before roasting resulted in the highest RS content, reaching 22.61%. Several key parameters of the rice samples before and after optimal moisture control were analyzed, including thermal stability, chain length distribution, volatile flavor composition, and scanning electron microscopy. Additionally, in vitro digestion properties were measured. The findings revealed that the volatile flavor compounds in the high-RS roasted rice significantly increased compared to non-roasted rice. Moreover, the thermal stability of the rice samples improved, and the chain length distribution exhibited significant changes. The water absorption and expansion properties were significantly lower in the high-RS roasted rice. Furthermore, the in vitro starch digestion of the roasted flour made from high-RS rice showed a significantly lower digestion rate compared to common rice, indicating a lower starch hydrolysis index in high-RS rice with the sbe-rs genotype. Overall, the roasting process of natural high-RS rice modifies its characteristics, increases the RS content, enhances the flavor, and results in a lower starch digestion rate compared to common rice. This study provides valuable data for the food industry to promote the application of high-RS rice varieties with mutations in the SBEIIb gene, such as Youtangdao2 (YTD2).
Collapse
Affiliation(s)
- Ruifang Yang
- Key Laboratory of Germplasm Innovation and Genetic Improvement of Grain and Oil Crops (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (R.Y.); (J.T.); (Q.Z.); (Z.P.)
| | - Jianhao Tang
- Key Laboratory of Germplasm Innovation and Genetic Improvement of Grain and Oil Crops (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (R.Y.); (J.T.); (Q.Z.); (Z.P.)
| | - Qi Zhao
- Key Laboratory of Germplasm Innovation and Genetic Improvement of Grain and Oil Crops (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (R.Y.); (J.T.); (Q.Z.); (Z.P.)
| | - Zhongze Piao
- Key Laboratory of Germplasm Innovation and Genetic Improvement of Grain and Oil Crops (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (R.Y.); (J.T.); (Q.Z.); (Z.P.)
| | - Gangseob Lee
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea;
| | - Changzhao Wan
- Key Laboratory of Germplasm Innovation and Genetic Improvement of Grain and Oil Crops (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (R.Y.); (J.T.); (Q.Z.); (Z.P.)
| | - Jianjiang Bai
- Key Laboratory of Germplasm Innovation and Genetic Improvement of Grain and Oil Crops (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (R.Y.); (J.T.); (Q.Z.); (Z.P.)
| |
Collapse
|