1
|
Niu F, Li X, Lin C, Hu X, Zhang B, Pan W. The mechanism of egg white protein to enhance the thermal gel properties of giant squid (Dosidicus gigas) surimi. Food Chem 2025; 469:142601. [PMID: 39724697 DOI: 10.1016/j.foodchem.2024.142601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/08/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024]
Abstract
In this paper, the interaction between egg white protein (EWP) and giant squid surimi was regulated by changing the ratio of surimi to EWP, and the mechanism of EWP on the gel properties of giant squid surimi was analyzed. The results showed that when the proportion of EWP was 16: 1, the hardness and springiness of surimi gel were the highest, reaching 645.5 g and 1.258, respectively. The gel strength reached 0.634 kg, the cooking yield of surimi gel increased by 27 % and the water loss decreased to less than 10 %. A significant increase in the proportion of fixed water and a decrease in the proportion of free water indicated that mixed surimi improved the "trapping" ability of water molecules, induced the formation of a more ordered "cage"-like structure, and significantly increased the water holding capacity and whiteness of surimi gels.
Collapse
Affiliation(s)
- Fuge Niu
- Food Safety Key Lab of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China.
| | - Xiang Li
- Food Safety Key Lab of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Chenyang Lin
- Food Safety Key Lab of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Xinyu Hu
- Food Safety Key Lab of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Bin Zhang
- Food Safety Key Lab of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Weichun Pan
- Food Safety Key Lab of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China.
| |
Collapse
|
2
|
Jiang Q, Wang L, Gao P, Yu P, Yang F, Yu D, Chen H, Xia W. Study on the effect and mechanism of chicken breast on the gel properties of silver carp (Hypophthalmichtys molitrix) surimi. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:1132-1142. [PMID: 37737024 DOI: 10.1002/jsfa.12998] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/14/2023] [Accepted: 09/22/2023] [Indexed: 09/23/2023]
Abstract
BACKGROUND Adding appropriate exogenous substances is an effective means to improve the quality of freshwater fish surimi. The present study investigated the effects of chicken breast on the gel properties of mixed minced meat products. RESULTS With the increase in the proportion of chicken breast, the breaking force of mixed gels gradually increased. When the addition ratio was 30:70, the gel strength of mixed gels had the highest strength of 759.00 g cm-1 and also the highest water holding capacity of 87.36%. Compared with surimi gels (0:100), the hardness, adhesiveness and chewiness of mixed gels were significantly improved. The increase in the proportion of chicken breast increased the thermal stability of the mixed sol and improved the rheological properties of the mixed sol. When the proportion was 40:60, the area of immobile water (A22 ) in the mixed gel increased significantly, and the highest A22 was 3463.24. The hydrophobic interactions and disulfide bonds in the mixed gel were significantly increased as a result of the addition of chicken breast. The results of microstructure, electrophoresis and Raman spectroscopy indicated that the addition of chicken breast promoted the cross-linking of the proteins in mixed gels, which facilitated the transformation of the protein secondary structure from α-helical to β-folded structure, thus forming a more uniform and orderly network structure. CONCLUSION These results suggest that improving the gel properties of silver carp surimi by use of chicken breast has practical implications for the development of new blended products for surimi processing. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Qixing Jiang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control, Wuxi, China
| | - Lishi Wang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control, Wuxi, China
| | - Pei Gao
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control, Wuxi, China
| | - Peipei Yu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control, Wuxi, China
| | - Fang Yang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control, Wuxi, China
| | - Dawei Yu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control, Wuxi, China
| | - Han Chen
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control, Wuxi, China
| | - Wenshui Xia
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control, Wuxi, China
| |
Collapse
|
3
|
Wang J, Xu Z, Lu W, Zhou X, Liu S, Zhu S, Ding Y. Improving the texture attributes of squid meat (sthenoteuthis oualaniensis) with slight oxidative and phosphate curing treatments. Food Res Int 2024; 176:113829. [PMID: 38163726 DOI: 10.1016/j.foodres.2023.113829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/01/2023] [Accepted: 12/05/2023] [Indexed: 01/03/2024]
Abstract
This study aimed to improve the pasty texture of squid meat by oxidative and phosphate curing (OPC) treatment, and elucidate the underlying mechanism. The shear force, springiness, weight gain, water-holding capacity (WHC), color and sensory evaluation of squid meat samples treated with a mild OPC approach (OPC_2, 10 mM H2O2 solution with complex phosphate solution) were significantly improved. However, the samples subjected to over-oxidized (20 and 30 mM H2O2 solution with complex phosphate solution) treatment did not obtain favorable outcomes. Microstructure analysis revealed that muscle fibers aggregated after moderate OPC treatments, leading to an increased spacing between muscle fiber bundles. This gap facilitated a more uniform distribution and restriction of water, according to low-field nuclear magnetic resonance (LF-NMR) results. The results from in vitro simulated oxidation of myofibrillar proteins (MPs) demonstrated that increased H2O2 led to formation of carbonyl groups and decreased sulfhydryl groups, and even secondary structure changes, according to fourier transform infrared spectroscopy (FT-IR). Particle size, zeta potential and sodium dodecyl sulfate-polyacryl amide gel electrophoresis (SDS-PAGE) results showed that oxidation caused protein aggregation into larger molecules. This study presents a novel approach to improve pasty texture of squid meat.
Collapse
Affiliation(s)
- Jiangxiang Wang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, China
| | - Zheng Xu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, China
| | - Wei Lu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Xuxia Zhou
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, China
| | - Shulai Liu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, China
| | - Shichen Zhu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, China.
| | - Yuting Ding
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, China.
| |
Collapse
|
4
|
Lan H, Chen L, Wang Y, Lu M, Chen B, Ai C, Teng H. Effect of к-carrageenan on saltiness perception and texture characteristic related to salt release in low-salt surimi. Int J Biol Macromol 2023; 253:126852. [PMID: 37703970 DOI: 10.1016/j.ijbiomac.2023.126852] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/29/2023] [Accepted: 09/09/2023] [Indexed: 09/15/2023]
Abstract
The purpose of this study was to investigate the effect of Kappa (к)-carrageenan on texture and perception of saltiness of low salt surimi. The low-field nuclear magnetic resonance (LF-NMR) and microstructure results showed that к-carrageenan could promote the formation of more immobilized water in low salt surimi gel, change its matrix structure, and lead to the uneven spatial distribution of sodium, thus enhancing saltiness perception. The rheological properties of surimi showed that к-carrageenan could increase the network strength of low salt surimi gel and improve its thermostability. Furthermore, the low salt surimi gel added with к-carrageenan has lower cooking loss, higher water holding capacity (WHC), gel strength and improved texture properties. Therefore, к-carrageenan has the effects of improving the quality and increasing salt perception of surimi gel. This study provides a new method for reducing salt consumption in food industry.
Collapse
Affiliation(s)
- Haijing Lan
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Lei Chen
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Yitong Wang
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Minxin Lu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Boyu Chen
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Chao Ai
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Hui Teng
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China.
| |
Collapse
|
5
|
Lv G, Chu Y, Chen Z, Cheng C, Zhang Z, Mao C, Deng S, Gao Y, Jia R. The effect of sodium tartrate and sodium citrate on quality changes of squid (Dosidicus gigas) surimi gel. J Texture Stud 2023; 54:136-145. [PMID: 36176063 DOI: 10.1111/jtxs.12725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 11/30/2022]
Abstract
The yield of squid has grown gradually; however, the lack of intensive processing has led to the slow development of the squid industry. In a previous study, some organic salts were found to improve the quality of squid surimi gel. Therefore, this research focused on the effects of sodium citrate (SC) and sodium tartrate (ST) on the quality of squid surimi gel. Physical measurements, such as gel texture, water-holding capacity, and color of squid surimi gel, were conducted. The addition of 2.5% SC and ST significantly improved the gel strength by 40.7, 57.0, 22.9, and 58.1%, respectively, of gel strength compared with the addition of: 1.5 SC, 3.5 SC, 1.5 ST, and 3.5% ST alone. Rheological measurements revealed that the addition of 2.5% SC or ST shortened the gel degradation temperature range (i.e., 2.5% SC or ST: 40-53°C; other treatments: 40-60°C) of the squid paste during heating. Results of chemical force analysis showed that the addition of a high quantity of salt accelerated protein aggregation and reduced hydrophobic interactions and disulfide bond formation. Finally, an increase in the number of β-sheets and a decrease in the bulk water content demonstrated that the addition of 2.5% organic salt could form squid gel with a better network structure. The findings provide a scientific basis for the development of high-quality squid surimi gel.
Collapse
Affiliation(s)
- Guancheng Lv
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Yanjiao Chu
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Zhi Chen
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Chen Cheng
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Ziyuan Zhang
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Chunyan Mao
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Shanggui Deng
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Yuanpei Gao
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan, China.,Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Ru Jia
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Ningbo University, Ningbo, China.,College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| |
Collapse
|
6
|
Li M, Yang J, Bao H, Chen Y, Gao Y, Deng S. The effect of heating method on the gel structures and properties of surimi prepared from Bombay duck ( Harpadon nehereus). Front Nutr 2022; 9:1060188. [PMID: 36505233 PMCID: PMC9729542 DOI: 10.3389/fnut.2022.1060188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 11/09/2022] [Indexed: 11/27/2022] Open
Abstract
This study investigates the effects of heating method, setting time, and setting temperature on the gel properties, water holding capacity (WHC), molecular forces, protein composition, protein conformation, and water transition of Bombay duck (BD) surimi gel. The obtained results demonstrate that the best gel properties are obtained by two-step heating at 30°C for 120 min while the hardness was 10.418 N and the breaking force was 4.52 N. Gel softening occurs at setting temperatures greater than 40°C due to the effect of endogenous enzymes in destroying the protein structure and increasing the hydrophobic and disulfide interactions. Low-field nuclear magnetic resonance spectra confirm that high two-step setting temperatures induce gel softening and the destruction of the surimi gel structure, as evidenced by the increased water migration at these temperatures. Of all protein conformations in the gel, the β-sheet structure, decreases from 38.40% at 30°C to 11.75% at 60°C when the setting time is 60 min, is the most susceptible to gel softening. Overall, the data reported herein provide a scientific basis for the development of new BD surimi products on an industrial level.
Collapse
|